通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
最近的一些作品已经采用了决策树,以建造可解释的分区,旨在最大限度地减少$ k $ -means成本函数。然而,这些作品在很大程度上忽略了与所得到的树中叶子的深度相关的度量,这考虑到决策树的解释性如何取决于这些深度,这可能令人惊讶。为了填补文献中的这种差距,我们提出了一种有效的算法,它考虑了这些指标。在7个数据集上的实验中,我们的算法产生的结果比决策树聚类算法,例如\ Cite {dasgupta2020explainplainable},\ cite {frost2020exkmc},\ cite {laber2021price}和\ cite {dblp:conf / icml / Makarychevs21}通常以相当浅的树木实现较低或等同的成本。我们还通过简单适应现有技术来表明,用k $ -means成本函数的二叉树引起的可解释的分区的问题不承认多项式时间中的$(1+ \ epsilon)$ - 近似$ p = np $,证明Questies Quest attmation算法和/或启发式。
translated by 谷歌翻译
在这项工作中,我们提出并评估了一种新的增强学习方法,紧凑体验重放(编者),它使用基于相似转换集的复发的预测目标值的时间差异学习,以及基于两个转换的经验重放的新方法记忆。我们的目标是减少在长期累计累计奖励的经纪人培训所需的经验。它与强化学习的相关性与少量观察结果有关,即它需要实现类似于文献中的相关方法获得的结果,这通常需要数百万视频框架来培训ATARI 2600游戏。我们举报了在八个挑战街机学习环境(ALE)挑战游戏中,为仅10万帧的培训试验和大约25,000次迭代的培训试验中报告了培训试验。我们还在与基线的同一游戏中具有相同的实验协议的DQN代理呈现结果。为了验证从较少数量的观察结果近似于良好的政策,我们还将其结果与从啤酒的基准上呈现的数百万帧中获得的结果进行比较。
translated by 谷歌翻译
使用规划算法和神经网络模型的基于模型的强化学习范例最近在不同的应用中实现了前所未有的结果,导致现在被称为深度增强学习的内容。这些代理非常复杂,涉及多个组件,可能会为研究产生挑战的因素。在这项工作中,我们提出了一个适用于这些类型代理的新模块化软件架构,以及一组建筑块,可以轻松重复使用和组装,以构建基于模型的增强学习代理。这些构建块包括规划算法,策略和丢失功能。我们通过将多个这些构建块组合实现和测试经过针对三种不同的测试环境的代理来说明这种架构的使用:Cartpole,Minigrid和Tictactoe。在我们的实施中提供的一个特定的规划算法,并且以前没有用于加强学习,我们称之为Imperage Minimax,在三个测试环境中取得了良好的效果。用这种架构进行的实验表明,规划算法,政策和损失函数的最佳组合依赖性严重问题。该结果提供了证据表明,拟议的架构是模块化和可重复使用的,对想要研究新环境和技术的强化学习研究人员有用。
translated by 谷歌翻译
随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
我们对跨越各个领域的多种域的275个经验网络的随机块模型(SBM)的拟合质量和尺寸幅度的订单进行系统分析。我们采用后预测模型检查作为评估拟合质量的标准,这涉及根据一组网络描述符比较由经验网络的推断模型生成的网络。我们观察到SBM能够为大多数网络提供准确的描述,但缺乏所有建模要求。特别地,具有大直径和慢速混合随机步道的网络往往由SBM非常赘言。然而,与经常假设的相反,在许多情况下,SBM可以很好地描述具有高丰度三角形的网络。我们证明,简单的网络描述符可用于评估SBM是否可以提供足够准确的表示,可能指向可以系统地提高这类模型的表现力的可能模型扩展。
translated by 谷歌翻译
传统文本分类方法通常需要良好数量的标记数据,这很难获得,尤其是限制域或较少的广泛语言。这种缺乏标记的数据导致了低资源方法的兴起,这在自然语言处理中具有低数据可用性。其中,零射击学习脱颖而出,它包括在没有任何先前标记的数据的情况下学习分类器。通过此方法报告的最佳结果使用变压器等语言模型,但下降到两个问题:高执行时间和无法处理长文本作为输入。本文提出了一种新的模型Zeroberto,它利用无监督的聚类步骤来获得分类任务之前的压缩数据表示。我们展示Zeroberto对长输入和更短的执行时间具有更好的性能,在FOLHauol数据集中的F1分数中表现出XLM-R大约12%。关键词:低资源NLP,未标记的数据,零射击学习,主题建模,变形金刚。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
信息理论措施已广泛采用学习和决策问题的特征。受到这一点的启发,我们介绍了Shannon Sense的信息损失的弱形式,ii)在考虑一系列有损的连续表示(特征)时,错误(MPE)意义上的最小概率的操作损失连续观察。我们展示了几个结果揭示了这种相互作用的结果。我们的第一个结果在采用离散的损耗表示(量化)而不是原始原始观察时,在其各自的操作损失的函数中提供弱的信息损失形式的下限。从这后,我们的主要结果表明,在考虑一般的持续陈述时,特定形式的消失信息丧失(渐近信息充足的弱势概念)意味着消失的MPE损失(或渐近运营充足机会)。我们的理论调查结果支持观察到选择要捕捉信息充足性的特征表示是适当的学习,但如果预期目标在分类中实现MPE,这种选择是一种相当保守的设计原则。支持这一表明,在某些结构条件下,我们表明,可以采取信息充足的替代概念(严格弱于互信息意义上的纯粹足够的充足),以实现运动充足。
translated by 谷歌翻译
注意机制对研究界提出了重大兴趣,因为他们承诺改善神经网络架构的表现。但是,在任何特定的问题中,我们仍然缺乏主要的方法来选择导致保证改进的具体机制和超参数。最近,已经提出了自我关注并广泛用于变压器 - 类似的架构中,导致某些应用中的重大突破。在这项工作中,我们专注于两种形式的注意机制:注意模块和自我关注。注意模块用于重新重量每个层输入张量的特征。不同的模块具有不同的方法,可以在完全连接或卷积层中执行此重复。研究的注意力模型是完全模块化的,在这项工作中,它们将与流行的Reset架构一起使用。自我关注,最初在自然语言处理领域提出,可以将所有项目与输入序列中的所有项目相关联。自我关注在计算机视觉中越来越受欢迎,其中有时与卷积层相结合,尽管最近的一些架构与卷曲完全消失。在这项工作中,我们研究并执行了在特定计算机视觉任务中许多不同关注机制的客观的比较,在广泛使用的皮肤癌MNIST数据集中的样本分类。结果表明,关注模块有时会改善卷积神经网络架构的性能,也是这种改进虽然明显且统计学意义,但在不同的环境中并不一致。另一方面,通过自我关注机制获得的结果表明了一致和显着的改进,即使在具有减少数量的参数的架构中,也可以实现最佳结果。
translated by 谷歌翻译