最近的工作表明,学习的图像压缩策略可以倾销标准的手工制作压缩算法,这些压缩算法已经开发了几十年的速率 - 失真折衷的研究。随着计算机视觉的不断增长的应用,来自可压缩表示的高质量图像重建通常是次要目标。压缩,可确保计算机视觉任务等高精度,例如图像分割,分类和检测,因此具有跨各种设置的显着影响的可能性。在这项工作中,我们开发了一个框架,它产生适合人类感知和机器感知的压缩格式。我们表明可以了解到表示,同时优化核心视觉任务的压缩和性能。我们的方法允许直接从压缩表示培训模型,并且这种方法会产生新任务和低拍学习设置的性能。我们呈现出与标准高质量JPG相比细分和检测性能提高的结果,但是在每像素的比特方面,表示表示的表示性比率为4至10倍。此外,与天真的压缩方法不同,在比标准JEPG的十倍小的级别,我们格式培训的分段和检测模型仅在性能下遭受轻微的降级。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
我们对跨越各个领域的多种域的275个经验网络的随机块模型(SBM)的拟合质量和尺寸幅度的订单进行系统分析。我们采用后预测模型检查作为评估拟合质量的标准,这涉及根据一组网络描述符比较由经验网络的推断模型生成的网络。我们观察到SBM能够为大多数网络提供准确的描述,但缺乏所有建模要求。特别地,具有大直径和慢速混合随机步道的网络往往由SBM非常赘言。然而,与经常假设的相反,在许多情况下,SBM可以很好地描述具有高丰度三角形的网络。我们证明,简单的网络描述符可用于评估SBM是否可以提供足够准确的表示,可能指向可以系统地提高这类模型的表现力的可能模型扩展。
translated by 谷歌翻译
信息理论措施已广泛采用学习和决策问题的特征。受到这一点的启发,我们介绍了Shannon Sense的信息损失的弱形式,ii)在考虑一系列有损的连续表示(特征)时,错误(MPE)意义上的最小概率的操作损失连续观察。我们展示了几个结果揭示了这种相互作用的结果。我们的第一个结果在采用离散的损耗表示(量化)而不是原始原始观察时,在其各自的操作损失的函数中提供弱的信息损失形式的下限。从这后,我们的主要结果表明,在考虑一般的持续陈述时,特定形式的消失信息丧失(渐近信息充足的弱势概念)意味着消失的MPE损失(或渐近运营充足机会)。我们的理论调查结果支持观察到选择要捕捉信息充足性的特征表示是适当的学习,但如果预期目标在分类中实现MPE,这种选择是一种相当保守的设计原则。支持这一表明,在某些结构条件下,我们表明,可以采取信息充足的替代概念(严格弱于互信息意义上的纯粹足够的充足),以实现运动充足。
translated by 谷歌翻译
最近的一些作品已经采用了决策树,以建造可解释的分区,旨在最大限度地减少$ k $ -means成本函数。然而,这些作品在很大程度上忽略了与所得到的树中叶子的深度相关的度量,这考虑到决策树的解释性如何取决于这些深度,这可能令人惊讶。为了填补文献中的这种差距,我们提出了一种有效的算法,它考虑了这些指标。在7个数据集上的实验中,我们的算法产生的结果比决策树聚类算法,例如\ Cite {dasgupta2020explainplainable},\ cite {frost2020exkmc},\ cite {laber2021price}和\ cite {dblp:conf / icml / Makarychevs21}通常以相当浅的树木实现较低或等同的成本。我们还通过简单适应现有技术来表明,用k $ -means成本函数的二叉树引起的可解释的分区的问题不承认多项式时间中的$(1+ \ epsilon)$ - 近似$ p = np $,证明Questies Quest attmation算法和/或启发式。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
挖掘大型数据集以预测新数据时,统计机器学习背后原则的限制不仅对大数据迅速产生了严峻的挑战,而且对数据生成过程被偏置为低算法复杂性的传统假设构成了严峻的挑战。即使在有限数据集生成器中为简单呈现潜在的算法信息偏见时,我们也显示完全自动化,有或没有访问伪随机发生器,可计算学习算法,特别是当前机器学习方法中使用的统计性质的统计性质(包括深度学习),可以始终通过足够大的数据集来欺骗,自然地或人工。特别地,我们证明,对于每个有限的学习算法,存在足够大的数据集大小,上面不可预测的欺骗者的算法概率是算法的上限(最多只取决于学习算法的乘法常数)任何其他更大数据集的概率。换句话说,非常大的和复杂的数据集可能欺骗学习算法作为任何其他特定数据集的“简单泡沫”。这些欺骗数据集保证,任何预测都会从高算法复杂性全局最佳解决方案中发散,同时朝向低算法复杂度局部最佳解决方案。我们讨论框架和经验条件,以避免这种欺骗性现象,远离统计机器学习,以基于或激励的算法信息理论和可计算性理论的内在力量。
translated by 谷歌翻译
客户服务Chatbots是对话系统,旨在为客户提供有关不同公司提供的产品/服务的信息。特别地,意图识别是自然语言低估Chatbot系统的能力的核心组件之一。在聊天训练识别的不同意图中,他们有一组是通用的任何客户服务Chatbot。普遍意图可以包括称呼,将对话交给人类代理人,告别。识别这些普遍意图的系统将非常有助于优化特定客户服务聊天训练过程。我们提出了一个普遍意图识别系统的发展,该系统受过培训,以识别28个不同的聊天跳闸中常见的11个意图组。拟议的系统考虑了最先进的单词嵌入模型,例如Word2VEC和BERT,基于卷积和经常性神经网络的深层分类器。所提出的模型能够区分这些普遍意图,均衡精度高达80.4 \%。此外,所提出的系统同样准确地识别短期和长文本请求中表达的意图。同时,错误分类错误通常发生在具有非常相似的语义领域,例如告别和正面评论之间。建议的系统将非常有帮助优化客户服务Chatbot的培训过程,因为我们的系统已经可用并检测到一些意图。与此同时,拟议的方法将是一个合适的基础模型,通过应用转移学习策略培训更具体的聊天措施。
translated by 谷歌翻译
由于多重冲突目标和非凸起约束上升的数值问题,快速生成无人机的最佳追逐动态,以遵循障碍物之间的动态目标是挑战。本研究建议解决具有融合的快速可靠的管道的困难,该管道包含1)目标运动预测和2)追逐计划者。它们基于采样和检查方法,包括生成高质量候选基元和具有光计算负荷的可行性测试。我们通过选择由过去观察构建的一组候选者中选择最佳预测来预测目标的运动。基于预测,我们构建了一组预期追逐轨迹,其减少了高阶导数,同时从预测的目标运动保持所需的相对距离。然后,候选轨迹在追逐者的安全性和朝向目标的可视性上进行测试,而不会逼近约束。在涉及动态障碍的具有挑战性的情况下,彻底评估了所提出的算法。此外,从目标识别到追逐运动规划的整体过程在无人机上完全实施,展示了现实世界的适用性。
translated by 谷歌翻译