虽然最先进的视觉变压器模型实现了图像分类的有希望的结果,但它们是非常昂贵的并且需要许多GFLOPS。尽管可以通过减少网络中的令牌数量来降低视觉变压器的GFLOPS,但是没有对所有输入图像的最佳设置。因此,在这项工作中,我们引入了可分辨率的无参数自适应令牌采样(ATS)模块,可以插入任何现有的视觉变压器架构。通过评分和自适应采样重要令牌,在视觉变压器上实现视觉变压器。结果,令牌的数量不再静态,但是每个输入图像都变化。通过将ATS集成为当前变压器块内的附加层,我们可以将它们转换为具有自适应令牌的更高效的视觉变压器。由于ATS是一种无参数模块,因此它可以作为即插即用模块添加到从货架上的预制视觉变压器中,从而在没有任何额外训练的情况下减少他们的GFLOP。但是,由于其可分辨动的设计,人们还可以培训配有ATS的视觉变压器。通过将其添加到多个最先进的视觉变压器,我们在想象成数据集上进行评估。我们的评估表明,通过将计算成本(GFLOPS)降低37%,在保留准确性时,该模块通过降低了37%,提高了最先进的模块。
translated by 谷歌翻译
虽然传统的排名系统仅关注最大化排名项目的效用,但公平感知的排名系统另外尝试平衡不同保护属性(如性别或种族)的曝光。为了实现这种类型的排名,我们基于分布鲁棒性的第一个原则推导出新的排名系统。我们在选择分布的球员之间制定最小的游戏,以最大限度地提高实用程序,同时满足公平的限制,针对对攻击性匹配统计训练数据的统计数据来最小化实用性。我们表明,我们的方法提供比现有基线方法高度公平的排名更好的效用。
translated by 谷歌翻译
在本文中,我们使用机器学习,概率和基于重力的方法的组合来提出一种用于为更大的墨尔本地区创建合成群体的算法。我们将这些技术与三个主要创新的混合模型相结合:1。分配活动模式时,我们为每个代理商生成各个活动链,对其队列量身定制; 2.选择目的地时,我们的目标是在旅行长度和目的地的基于活动的景点之间取得平衡; 3.我们考虑到代理人剩余的旅行数量,以确保他们不选择不合理的目的地以退回家庭。我们的方法是完全打开和可复制的,只需要公开的数据来生成与常用代理的建模软件兼容的合成代理商,例如Matsim。在各种人口尺寸的距离分布,模式选择和目的地选择方面,发现合成群是准确的。
translated by 谷歌翻译
本文提出了一种新的方法来预测,并确定机场的平均出租时间是否超过下一小时运营中的预定阈值。该领域的事先工作专注于预测飞行的飞行基础上的出租车,这需要大量努力和关于从大门到跑道建模出租车活动的数据。直接从表面雷达信息学习,加工最小,提出了一种基于计算机视觉的模型,以便隐式地利用适应特定信息(例如,跑道配置,滑行过程中的飞机状态)的方式结合了机场表面数据并自动由人工智能(AI)。
translated by 谷歌翻译
使用超越欧几里德距离的神经网络,深入的Bregman分歧测量数据点的分歧,并且能够捕获分布的发散。在本文中,我们提出了深深的布利曼对视觉表现的对比学习的分歧,我们的目标是通过基于功能Bregman分歧培训额外的网络来提高自我监督学习中使用的对比损失。与完全基于单点之间的分歧的传统对比学学习方法相比,我们的框架可以捕获分布之间的发散,这提高了学习表示的质量。我们展示了传统的对比损失和我们提出的分歧损失优于基线的结合,并且最先前的自我监督和半监督学习的大多数方法在多个分类和对象检测任务和数据集中。此外,学习的陈述在转移到其他数据集和任务时概括了良好。源代码和我们的型号可用于补充,并将通过纸张释放。
translated by 谷歌翻译
数据在Web上发布了大量的时间,但大多数数据都是非结构化的,使得很难理解和难以解释。信息提取(IE)方法从非结构化数据获取结构化信息。其中一个具有挑战性的一个任务是事件提取(EE),它寻求从文本中获得有关具体事件及其演员的信息。 EE在许多域中有用,例如构建知识库,信息检索和概述。在过去的几十年中,开发了一些像Ace,Comeo和Icews这样的事件本体,以定义文本中观察到的事件的事件表格,演员和维度。这些事件本体仍然具有一些缺点,例如仅涵盖几个主题,如政治事件,在定义论证角色和金标准数据不足时具有不灵活的结构。为了解决这些问题,我们提出了一个事件本体,即Cofee,它包含专家领域知识和数据驱动方法,用于识别文本的事件。 Cofee由两个层次结构级别(事件类型和事件子类型)组成,包括与环境问题,网络空间和刑事活动有关的新类别,这些类别需要立即监测。此外,根据每个事件子类型的动态角色被定义为捕获事件的各种维度。在随访实验中,在维基百科事件中评估了所提出的本体,并显示为一般和全面。此外,为了便于编写事件提取的金标准数据,基于CoFee提出了一种独立于语言的在线工具。由10人专家注释的金标准数据集也是在波斯语中组成的24K新闻文章。最后,我们提出了一种基于深度学习技术的监督方法,以自动提取相关事件和相应的演员。
translated by 谷歌翻译
准确诊断自闭症谱系障碍(ASD),随后有效康复对该疾病的管理至关重要。人工智能(AI)技术可以帮助医生应用自动诊断和康复程序。 AI技术包括传统机器学习(ML)方法和深度学习(DL)技术。常规ML方法采用各种特征提取和分类技术,但在DL中,特征提取和分类过程是智能的,一体地完成的。诊断ASD的DL方法已经专注于基于神经影像动物的方法。神经成像技术是无侵入性疾病标志物,可能对ASD诊断有用。结构和功能神经影像技术提供了关于大脑的结构(解剖结构和结构连接)和功能(活性和功能连接)的实质性信息。由于大脑的复杂结构和功能,提出了在不利用像DL这样的强大AI技术的情况下使用神经影像数据进行ASD诊断的最佳程序可能是具有挑战性的。本文研究了借助DL网络进行以区分ASD进行的研究。还评估了用于支持ASD患者的康复工具,用于利用DL网络的支持患者。最后,我们将在ASD的自动检测和康复中提出重要挑战,并提出了一些未来的作品。
translated by 谷歌翻译