基于成本的图像补丁匹配是计算机视觉,摄影测量和遥感的各种技术的核心。当需要在源图像和目标图像中的参考补丁之间的子像素视差时,必须内插的成本函数或目标图像。虽然基于成本的插值是最容易实现的,但是多个工程已经表明,基于图像的插值可以提高子像素匹配的准确性,但通常以昂贵的搜索过程的成本。然而,这是有问题的,特别是对于诸如立体声匹配或光学流量计算的非常计算密集型应用。在本文中,我们示出了用于一维匹配的壳体差异计算的闭合形式公式,例如,在搜索空间的纠正立体声图像的情况下,在使用标准的NCC,SSD和SAD时存在一个维度。成本函数。然后,我们展示了如何将所提出的公式概括为高维搜索空间的情况,这是未经化的立体声匹配和光学流量提取所必需的。我们还将结果与传统的成本卷插值公式以及最先进的成本的细化方法进行比较,并表明所提出的公式对基于最先进的成本提供了较小的改进在一维搜索空间的情况下的方法,以及搜索空间是二维时的显着改进。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
使用社交媒体网站和应用程序已经变得非常受欢迎,人们在这些网络上分享他们的照片。在这些网络上自动识别和标记人们的照片已经提出了隐私保存问题,用户寻求隐藏这些算法的方法。生成的对抗网络(GANS)被证明是非常强大的在高多样性中产生面部图像以及编辑面部图像。在本文中,我们提出了一种基于GAN的生成掩模引导的面部图像操纵(GMFIM)模型,以将无法察觉的编辑应用于输入面部图像以保护图像中的人的隐私。我们的模型由三个主要组件组成:a)面罩模块将面积从输入图像中切断并省略背景,b)用于操纵面部图像并隐藏身份的GaN的优化模块,并覆盖身份和c)用于组合输入图像的背景和操纵的去识别的面部图像的合并模块。在优化步骤的丢失功能中考虑了不同的标准,以产生与输入图像一样类似的高质量图像,同时不能通过AFR系统识别。不同数据集的实验结果表明,与最先进的方法相比,我们的模型可以实现对自动面部识别系统的更好的性能,并且它在大多数实验中捕获更高的攻击成功率。此外,我们提出的模型的产生图像具有最高的质量,更令人愉悦。
translated by 谷歌翻译
预防和无线网络检测入侵和攻击已成为一个重要而严峻​​的挑战。在另一方面,由于无线节点的资源有限,使用监测在无线传感器网络中的永久监视节点,以防止和检测这种类型的网络的入侵和攻击的是几乎不存在。因此,今天来克服这个问题的解决方案是远程控制系统的讨论,并已成为在各个领域感兴趣的话题之一。远程监控的无线传感器网络节点的性能和行为,除了在网络内检测恶意节点,也可以在以后的预测恶意节点的行为。在目前的研究,采用基于鲸优化算法(WOA)和遗传算法(GA)和基于样本的分类的组合特征选择一个网络入侵检测系统,提出了在这项研究中,标准的数据集KDDCUP1999已经使用在这关系到健康的节点和类型的恶意节点的特性被存储基础网络中的攻击类型。该方法是基于特征选择的基础上的精度标准方面鲸优化算法和遗传算法KNN分类相结合,具有比其他以前的方法更好的结果。在此基础上,它可以说是鲸鱼优化算法和遗传算法提取了相关的类标签井的特征和KNN方法已经能够很好地检测出在无线网络的入侵检测数据集的不当行为节点。
translated by 谷歌翻译
由于问题的大规模性质,机器学习算法中的封锁率调整是一种计算挑战性的任务。为了开发高参数调整的有效策略,一个有希望的解决方案是使用群体智能算法。人造蜜蜂殖民地(ABC)优化为此目的作为一个有希望有效的优化算法。然而,在某些情况下,由于初始解决方案较差和昂贵的客观函数,ABC可能遭受缓慢的收敛速度或执行时间。为了解决这些问题,提出了一种新颖的算法,OPTABC,以帮助ABC算法更快地达到近最佳解决方案。 Optabc集成了人造蜂殖民地算法,K均值聚类,贪婪算法和基于反对的学习策略,用于调整不同机器学习模型的超参数。 Optabc采用这些技术,以试图多样化初始群体,因此增强了收敛能力,而不会显着降低准确性。为了验证所提出的方法的性能,我们将结果与先前的最先进的方法进行比较。实验结果表明,与文献中的现有方法相比,Optabc的有效性。
translated by 谷歌翻译
驾驶行为是道路崩溃和事故的主要原因之一,可以通过识别和最小化攻击性驾驶行为来减少这些原因。本研究确定了当不同情况下的驾驶员(匆忙,精神冲突,报复)开始积极推动时的时间戳。需要观察者(真实或虚拟)来检查驾驶行为以发现攻击性驾驶场合;我们通过使用智能手机的GPS传感器来检测位置并每三分钟分类驱动器的驾驶行为来克服这个问题。为了检测我们数据集中的TimeSeries模式,我们使用RNN(GRU,LSTM)算法来识别驾驶过程中的模式。该算法与道路,车辆,位置或驾驶员特性无关。我们得出结论,三分钟(或更多)的驾驶(120秒的GPS数据)足以识别驾驶员行为。结果显示出高精度和高F1分数。
translated by 谷歌翻译
我们的目标是执行分销(OOD)检测,即,检测机器人在从不同分布的环境中运行而不是用于训练机器人的环境。我们可能大致正确(PAC)--Bayes理论,以便在培训分布上培训一项保证性能的保证的政策。我们对OOD检测的关键思想依赖于以下直觉:违反测试环境的性能,提供了机器人运营的证据。我们通过基于p值和浓度不平等来使其通过统计技术来形式化。由此产生的方法(i)提供了保证的置信信心界限,包括探测器的假正负率和(ii)的误报和假负率的界限仅是任务驱动和敏感,仅适用于影响机器人性能的变化。我们在使用具有不熟悉的形状或姿势的对象以及在不熟悉的环境(包括风扰动和不同的障碍密度)中使用具有不熟悉的形状或姿势的对象和姿势的无人驾驶障碍物的仿真任务的模拟和硬件中的方法。我们的例子表明我们可以在少数季度试验中执行任务驱动的OOD检测。与基线的比较也展示了我们的方法的优势,以提供统计保证并对任务 - 无关分配转变不敏感。
translated by 谷歌翻译