制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
在针对自闭症谱系障碍患者的机器人辅助治疗中,如果必须手动控制机器人,则在治疗过程中的治疗师工作量会增加。为了允许治疗师专注于与人的互动,机器人应该更加自主,即它应该能够解释该人的状态并根据其行为不断适应其行为。在本文中,我们开发了一个个性化的机器人行为模型,该模型可以在活动期间的机器人决策过程中使用。该行为模型是在从真实交互数据中学到的用户模型的帮助下训练的。我们将Q学习用于此任务,因此结果表明该策略需要大约10,000次迭代才能收敛。因此,我们调查了改善收敛速度的政策转移;我们表明这是一个可行的解决方案,但是不适当的初始政策可以导致最终的最终回报。
translated by 谷歌翻译
生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
深度学习模型在识别医学图像中的发现方面表现出了极大的有效性。但是,他们无法处理不断变化的临床环境,从而带来了来自不同来源的新注释的医学数据。为了利用传入的数据流,这些模型将在很大程度上受益于从新样本中依次学习,而不会忘记先前获得的知识。在本文中,我们通过应用现有的最新持续学习方法介绍了MedMnist收集中连续疾病分类的基准。特别是,我们考虑了三种连续的学习方案,即任务和班级增量学习以及新定义的跨域增量学习。疾病的任务和班级增量学习解决了对新样本进行分类的问题,而无需重新从头开始模型,而跨域增量学习解决了处理源自不同机构的数据集的问题,同时保留了先前获得的知识。我们对表现进行彻底的分析,并研究如何在这种情况下表现出灾难性遗忘的持续学习挑战。令人鼓舞的结果表明,持续学习具有推进疾病分类并为临床环境产生更强大,更有效的学习框架的主要潜力。将公开提供完整基准测试的代码存储库,数据分区和基线结果。
translated by 谷歌翻译
由于其非参数化干扰和灾难性遗忘的非参数化能力,核心连续学习\ Cite {derakhshani2021kernel}最近被成为一个强大的持续学习者。不幸的是,它的成功是以牺牲一个明确的内存为代价来存储来自过去任务的样本,这妨碍了具有大量任务的连续学习设置的可扩展性。在本文中,我们介绍了生成的内核持续学习,探讨了生成模型与内核之间的协同作用以进行持续学习。生成模型能够生产用于内核学习的代表性样本,其消除了在内核持续学习中对内存的依赖性。此外,由于我们仅在生成模型上重播,我们避免了与在整个模型上需要重播的先前的方法相比,在计算上更有效的情况下避免任务干扰。我们进一步引入了监督的对比正规化,使我们的模型能够为更好的基于内核的分类性能产生更具辨别性样本。我们对三种广泛使用的连续学习基准进行了广泛的实验,展示了我们贡献的能力和益处。最值得注意的是,在具有挑战性的SplitCifar100基准测试中,只需一个简单的线性内核,我们获得了与内核连续学习的相同的准确性,对于内存的十分之一,或者对于相同的内存预算的10.1%的精度增益。
translated by 谷歌翻译
通过医学成像检测疾病是由于其非侵入性的。医学成像支持多种数据模式,可以在人体内部进行彻底快速的外观。但是,解释成像数据通常是耗时的,需要大量的人类专业知识。深度学习模型可以加快解释并减轻人类专家的工作。但是,这些模型是数据密集型的,需要大量标记的图像进行培训。在新型疾病暴发(例如Covid-19)中,我们通常没有所需的标记成像数据,尤其是在流行病开始时。深度转移学习通过在公共领域中使用验证的模型来解决此问题,例如任何VGGNET,RESNET,INCEPTION,DENSENET等的变体都是功能学习者,以快速从较少的样本中适应目标任务。大多数审慎的模型都是深层建筑的深度。他们接受了大型多级数据集(例如ImageNet)的培训,并在建筑设计和超级参数调整方面进行了重大努力。我们提出了1个更简单的生成源模型,在单个但相关的概念上预估计,可以与现有较大的预审预周化模型一样有效。我们证明了生成转移学习的有用性,该学习需要较少的计算和培训数据,对于少数射击学习(FSL),使用COVID-19-19,二进制分类用例。我们将经典的深度转移学习与我们的方法进行了比较,还报告了FSL结果,三个设置为84、20和10个培训样本。用于COVID-19分类的生成FSL的模型实现可在https://github.com/suvarnak/generativefslcovid.git上公开获得。
translated by 谷歌翻译
强大的增强学习(RL)的目的是学习一项与模型参数不确定性的强大策略。由于模拟器建模错误,随着时间的推移,现实世界系统动力学的变化以及对抗性干扰,参数不确定性通常发生在许多现实世界中的RL应用中。强大的RL通常被称为最大问题问题,其目的是学习最大化价值与不确定性集合中最坏可能的模型的策略。在这项工作中,我们提出了一种称为鲁棒拟合Q-材料(RFQI)的强大RL算法,该算法仅使用离线数据集来学习最佳稳健策略。使用离线数据的强大RL比其非持续性对应物更具挑战性,因为在强大的Bellman运营商中所有模型的最小化。这在离线数据收集,对模型的优化以及公正的估计中构成了挑战。在这项工作中,我们提出了一种系统的方法来克服这些挑战,从而导致了我们的RFQI算法。我们证明,RFQI在标准假设下学习了一项近乎最佳的强大政策,并证明了其在标准基准问题上的出色表现。
translated by 谷歌翻译
黑色素瘤是一种严重的皮肤癌,在后期阶段高死亡率。幸运的是,当早期发现时,黑色素瘤的预后是有希望的,恶性黑色素瘤的发病率相对较低。结果,数据集严重不平衡,这使培训当前的最新监督分类AI模型变得复杂。我们建议使用生成模型来学习良性数据分布,并通过密度估计检测出分布(OOD)恶性图像。标准化流(NFS)是OOD检测的理想候选者,因为它们可以计算精确的可能性。然而,它们的感应偏见对明显的图形特征而不是语义上下文障碍障碍的OOD检测。在这项工作中,我们旨在将这些偏见与黑色素瘤的领域水平知识一起使用,以改善基于可能性的OOD检测恶性图像。我们令人鼓舞的结果表明,使用NFS检测黑色素瘤的可能性。我们通过使用基于小波的NFS,在接收器工作特性的曲线下,面积增加了9%。该模型需要较少的参数,以使其更适用于边缘设备。拟议的方法可以帮助医学专家诊断出皮肤癌患者并不断提高存活率。此外,这项研究为肿瘤学领域的其他领域铺平了道路,具有类似的数据不平衡问题\ footNote {代码可用:
translated by 谷歌翻译
我们提出了一种多层变量自动编码器方法,我们称为HR-VQVAE,该方法学习数据的层次离散表示。通过利用新的目标函数,HR-VQVAE中的每个层都通过量化的编码来学习从以前的层中的残差表示离散表示。此外,每一层的表示形式在层次上链接到以前的图层。我们评估了图像重建和生成任务的方法。实验结果表明,HR-VQVAE学到的离散表示使解码器能够比基线方法(即VQVAE和VQVAE-2)重建具有较小的变形的高质量图像。 HR-VQVAE还可以产生优于最先进的生成模型的高质量和多样化的图像,从而进一步验证学习表现的效率。 HR-VQVAE的层次结构性质i)减少了解码时间,使该方法特别适合高负载任务,ii)允许增加代码簿的大小而不会引起代码书折叠问题。
translated by 谷歌翻译
给定包含具有不同特征的不同对象的图像数据集,例如形状,大小,旋转和X-y位置;以及变异自动编码器(VAE);在VAE的隐藏空间向量中创建这些功能的分解编码是本文感兴趣的任务。DSPRITE数据集为本研究中所需的实验提供了所需的功能。在训练VAE与生成对抗网络(GAN)结合后,隐藏矢量的每个维度都被破坏,以探索每个维度中的分离。请注意,GAN用于提高输出图像重建的质量。
translated by 谷歌翻译