最近,已经开发了方法以准确地预测其在特定任务上的深神经网络(DNN)的测试性能,给定其底层拓扑结构的统计数据。然而,进一步利用这一新发现的实际应用的洞察力由于时间和记忆的高计算成本,因此是棘手的。在这项工作中,我们定义了一类新的拓扑功能,可以准确地表征学习的进度,同时在运行时迅速计算。此外,我们所提出的拓扑功能易于配备反向化,这意味着它们可以在最终训练中纳入其中。我们的新开发的DNN实际拓扑表征允许额外的应用程序。我们首先显示我们可以预测没有测试集的DNN的性能,而无需高性能计算。我们还证明了我们对DNN的拓扑表征在估计任务相似性方面是有效的。最后,我们表明我们可以通过主动限制DNN的拓扑结构来诱导DNN中的学习。这使得在元学框架中收缩了DNN的基础结构来开辟了新的途径。
translated by 谷歌翻译
神经网络的架构和参数通常独立优化,这需要每当修改体系结构时对参数的昂贵再次再次再次进行验证。在这项工作中,我们专注于在不需要昂贵的再培训的情况下越来越多。我们提出了一种在训练期间添加新神经元的方法,而不会影响已经学到的内容,同时改善了培训动态。我们通过最大化新重量的梯度来实现后者,并通过奇异值分解(SVD)有效地找到最佳初始化。我们称这种技术渐变最大化增长(Gradmax),并展示其各种视觉任务和架构的效力。
translated by 谷歌翻译
尽管速率失真优化是传统图像和视频压缩的关键部分,但存在不存在许多方法,将该概念传送到端到端训练的图像压缩。大多数框架包含静态压缩和解压缩模型,在训练后固定,因此不可能实现高效的速率失真优化。在以前的工作中,我们提出了RDONET,它使RDO方法能够与HEVC中的自适应块分区相当。在本文中,我们通过引入RDO的低复杂性估算来增强培训,该培训将结果归因于培训。此外,我们提出了快速且非常快速的RDO推理模式。通过我们的小说训练方法,我们在先前的RDONET模型上实现了MS-SSIM的平均节省19.6%,其在可比较的传统深图像编码器上等于27.3%的速率节省。
translated by 谷歌翻译
在本文中,我们解决了用高各向异性定位噪声损坏的多点云的问题。我们的方法遵循高斯混合模型(GMM)重建的广泛使用的框架,预期最大化(EM)算法。现有方法基于空间不变各向同性高斯噪声的隐含假设。然而,在单分子定位显微镜(SMLM)的应用中,在实践中侵犯了这种假设。为了解决这个问题,我们建议介绍一个明确的定位噪声模型,使用GMM从噪声处理中脱颖而出。我们设计了一种随机EM算法,将无噪声数据视为潜在变量,每个EM步骤在闭合型溶液中。我们的方法的第一个优点是处理具有任意考兰的空间变体和各向异性高斯噪声。第二个优点是利用显式噪声模型来施加关于可以从物理传感器获得的噪声的先验知识。我们在各种模拟数据中展示了我们的噪声处理策略提高了高水平各向异性噪声的鲁棒性。我们还展示了我们对真实SMLM数据的方法的表现。
translated by 谷歌翻译
伪标签的使用占上处,以解决无监督的域自适应(UDA)重新识别(RE-ID),具有最佳性能。事实上,这家族的方法已经上升到几个有效的UDA重新ID特定框架。在这些作品中,改善伪标签UDA重新ID性能的研究方向多样化,主要基于直觉和实验:炼制伪标签,减少伪标签中的错误的影响......它可能很难推断出来它们是一般的良好做法,可以以任何伪标记方法实施,以始终如一地提高其性能。为了解决这一关键问题,提出了一个关于伪标签UDA RE-ID的新的理论视图。这些贡献是三倍:(i)伪标签UDA重新ID的新理论框架,通过UDA重新ID性能的新一般学习上限,正式化。 (ii)伪标签的一般良好做法,直接推导出拟议的理论框架的解释,以改善目标重新ID表现。 (iii)关于具有挑战性的人和车辆交叉数据集重新ID任务的广泛实验,对各种最先进的方法和各种建议的良好实践实现显示了一致的性能改进。
translated by 谷歌翻译
本文介绍了一种基于Prolog的推理模块,以产生鉴于由黑盒分类器计算的预测的反事实解释。建议的符号推理模块还可以解决使用地面真实标签而不是预测的if查询。总的来说,我们的方法包括四个明确定义的阶段,可以应用于任何结构化模式分类问题。首先,我们通过抵消缺失值并归一化数值特征来预先处理给定的数据集。其次,我们使用模糊群集将数值特征转换为象征性的,使得提取的模糊簇映射到有序的预定义符号集。第三,我们使用标称值,预定义符号,决策类和置信度值将实例编码为Prolog规则。第四,我们使用模糊粗糙集理论来计算每个Prolog规则的整体置信度,以处理通过将数值转变为符号而引起的不确定性。此步骤对新的相似性功能进行了额外的理论贡献,以比较涉及置信度值的先前定义的Prolog规则。最后,我们在人类之间实现了聊天栏和基于Prolog的推理模块,以解决自然语言查询并生成反事实解释。在使用合成数据集的数值模拟期间,我们在使用不同的模糊运算符和相似性功能时研究我们的系统的性能。在结束时,我们说明了我们的推理模块如何使用不同的用例工作。
translated by 谷歌翻译
通过定义具有可变复杂性的流量类型独立环境,基于深度加强学习,介绍一种新的动态障碍避免方法。在当前文献中填补了差距,我们彻底调查了缺失速度信息对代理商在避免任务中的性能的影响。这是实践中至关重要的问题,因为几个传感器仅产生物体或车辆的位置信息。我们在部分可观察性方面评估频繁应用的方法,即在深神经网络中的复发性并简单帧堆叠。为我们的分析,我们依靠最先进的无模型深射RL算法。发现速度信息缺乏影响代理商的性能。两种方法 - 复发性和帧堆叠 - 不能在观察空间中一致地替换缺失的速度信息。但是,在简化的情况下,它们可以显着提高性能并稳定整体培训程序。
translated by 谷歌翻译
ising机器是一个有前途的非von-neumann用于神经网络训练和组合优化的计算概念。然而,虽然可以用诸如展示机器实现各种神经网络,但是它们无法执行快速统计采样使得它们与数字计算机相比训练这些神经网络的效率低。在这里,我们通过注入模拟噪声来介绍一个通用概念,以实现具有ising机器的超快统计抽样。通过光电型机,我们证明这可用于精确采样Boltzmann分布和无监督的神经网络训练,具有与基于软件的培训等于准确性。通过模拟,我们发现ising机器可以比基于软件的方法更快地执行统计采样顺序。这使得Ising Machines成为机器学习的有效工具和超出组合优化的其他应用。
translated by 谷歌翻译
对森林生物量股票的知识及其发展对于实施有效的气候变化缓解措施是重要的。需要研究驾驶AF的过程,重新砍伐和森林砍伐,是碳核算的先决条件。使用空机激光雷达的遥感可用于测量大规模植被生物量。我们呈现深度学习系统,用于预测木材体积,地上生物量(AGB),随后直接从3D LIDAR点云数据碳。我们设计了不同的神经网络架构进行点云回归,并在遥感数据上评估AGB估计从国家森林库存中的现场测量获得的遥感数据。我们对回归的Minkowski卷积神经网络的调整给出了最佳结果。与在Point云的基本统计中运营的最先进的方法相比,深度神经网络产生了明显更准确的木材体积,AGB和碳估计,我们希望这一发现对基于LIDAR的分析产生了强烈影响陆地生态系统动态。
translated by 谷歌翻译
在X射线游离电子激光器(XFELS)处的单粒子成像(SPI)特别适合于确定其本地环境中颗粒的3D结构。对于成功的重建,必须从大量获取的图案中分离出来的衍射模式。我们建议将此任务作为图像分类问题制定,并使用卷积神经网络(CNN)架构来解决它。开发了两个CNN配置:一个最大化F1分数的CNN配置和强调高召回的一个配置。我们还将CNN与期望最大化(EM)选择以及尺寸过滤结合起来。我们观察到,我们的CNN选择在我们之前的工作中使用的电子选择的功率谱密度函数的对比度较低。但是,基于CNN的选择的重建提供了类似的结果。将CNN引入SPI实验允许简化重建管道,使研究人员能够在飞行中对模式进行分类,并且因此,它们使他们能够严格控制其实验的持续时间。我们认为,在描述的SPI分析工作流程中提出基于非标准的人工智能(AI)解决方案可能对SPI实验的未来发展有益。
translated by 谷歌翻译