我们介绍了关于多语言信息访问(MIA)2022共享任务的研讨会的结果,评估了16种类型上多样性的语言中的跨语性开放回程答案(QA)系统。在此任务中,我们在14种类型上多样化的语言中调整了两个大规模的跨语性开放式质疑QA数据集,并使用了2种代表性不足的语言中的新注释的开放式QA数据:Tagalog和Tamil。四个团队提交了他们的系统。利用迭代开采的最佳系统是不同的负面示例和较大的预审慎模型达到32.2 F1,表现优于我们的基线4.5分。第二最佳系统使用实体感知的上下文化表示文档检索,并在泰米尔语(20.8 F1)方面取得了重大改进,而其他大多数系统的得分几乎为零。
translated by 谷歌翻译
开发对手挑战NLP系统的方法是提高模型性能和解释性的有前途的途径。在这里,我们描述了团队在第一个动态对抗数据收集(DADC)的任务1中“长角牛”的方法,该研讨会要求团队手动欺骗一个模型,以挖掘出挖掘的问题回答任务。我们的团队首先结束,模型错误率为62%。我们主张采用系统的,语言知情的方法来制定对抗性问题,并描述了试点实验的结果以及我们的官方提交。
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
我们提出了一个多能结构的算法框架,该结构从简单的紧凑结构演变为各种复杂的3-D结构,以设计形状可转换,可重新配置和可部署的结构和机器人。我们的算法方法提出了一种将由统一的构件组成的紧凑结构转换为大型,所需的3D形状的方法。类似于可以根据编码的信息成长为预编程形状的多能干细胞,我们称之为DNA,称为合子结构的紧凑型面板可以通过对其连接路径进行编程,可以演变成任意的3D结构。我们的堆叠算法通过将所需结构的体素化表面成反比,从而获得了这一编码序列。应用堆叠算法获得的连接路径,可以将指定的Zygote结构的紧凑型堆叠面板部署到各种大型3D结构中。我们在概念上通过分别释放商业弹簧铰链和热驱动的形状合金(SMA)铰链来证明我们的多能发展结构。我们还表明,所提出的概念可以在较小的工作区中制造大型结构。
translated by 谷歌翻译
时间序列形状是最近发现对时间序列聚类有效(TSC)有效的歧视子序列。形状方便地解释簇。因此,TSC的主要挑战是发现高质量的可变长度形状以区分不同的簇。在本文中,我们提出了一种新型的自动编码器窗帘方法(AutoShape),这是第一次利用自动编码器和塑形器以不受欢迎的方式确定形状的研究。自动编码器的专门设计用于学习高质量的形状。更具体地说,为了指导潜在的表示学习,我们采用了最新的自我监督损失来学习不同变量的可变长度塑形塑形(时间序列子序列)的统一嵌入,并提出多样性损失,以选择歧视嵌入的嵌入方式统一空间。我们介绍了重建损失,以在原始时间序列空间中恢复形状,以进行聚类。最后,我们采用Davies Bouldin指数(DBI),将学习过程中的聚类性能告知AutoShape。我们介绍了有关自动赛的广泛实验。为了评估单变量时间序列(UTS)的聚类性能,我们将AutoShape与使用UCR存档数据集的15种代表性方法进行比较。为了研究多元时间序列(MTS)的性能,我们使用5种竞争方法评估了30个UEA档案数据集的AutoShape。结果证明了AutoShape是所有比较的方法中最好的。我们用形状来解释簇,并可以在三个UTS案例研究和一个MTS案例研究中获得有关簇的有趣直觉。
translated by 谷歌翻译
视频行动识别算法不仅应考虑空间信息,还应考虑暂时关系,这仍然具有挑战性。我们提出了一个基于3D-CNN的动作识别模型,称为块时空间空间路径网络(BTSNET),该模型可以通过多个途径来调整时间和空间接受场。我们设计了一个受自适应内核选择模型启发的新型模型,该模型是一种用于自适应编码的有效特征的体系结构,可自适应地选择用于图像识别的空间接收场。将这种方法扩展到时间领域,我们的模型提取了时间和渠道的关注,并融合了有关各种候选操作的信息。为了进行评估,我们在UCF-101,HMDB-51,SVW和Epic-Kitchen数据集上测试了我们提出的模型,并表明它在没有训练的情况下进行了很好的概括。 BTSNET还基于时空通道的注意力提供了可解释的可视化。我们确认基于此可视化的3D卷积块为3D卷积块提供更好的表示。
translated by 谷歌翻译
视频内容不仅是人类观看的,而且越来越多地被机器观看。例如,机器学习模型分析监视视频,以进行安全性和流量监控,通过YouTube视频搜索不适当的内容,等等。在本文中,我们提出了一个可扩展的视频编码框架,该框架通过其基础层bitstream和人类视觉通过其增强层的bitstream来支持机器视觉(特别是对象检测)。所提出的框架包括基于常规神经网络(DNN)的视频编码的组件。结果表明,与最先进的视频编解码器相比,在对象检测中,提议的框架可节省13-19%的位,同时在人类视觉任务上保持竞争力。
translated by 谷歌翻译
鉴于大量的跨境流量,对行业的有效和有效控制对于保护人和社会免受非法行业的影响而在促进合法交易的同时变得更加重要。但是,交易级贸易数据集的有限可访问性阻碍了公开研究的进展,许多海关管理部门并未受益于基于数据的风险管理的最新进展。在本文中,我们介绍了一个进口声明数据集,以促进海关管理部门和数据科学研究人员领域专家之间的合作。该数据集包含54,000个具有22个关键属性的人为产生的交易,并且在维护相关功能的同时与CTGAN合成。合成数据具有多个优点。首先,释放数据集没有限制,这些限制不允许披露原始的导入数据。其次,制造步骤最大程度地减少了贸易统计中可能存在的身份风险。最后,已发布的数据遵循与源数据相似的分布,因此可以在各种下游任务中使用。通过提供数据及其生成过程,我们为欺诈检测任务打开基线代码,因为我们从经验上表明,更高级的算法可以更好地检测欺诈。
translated by 谷歌翻译
随着深度学习(DL)的引入,常用心电图(ECG)诊断模型的性能改善。但是,尚未充分研究多个DL组件的各种组合和/或数据增强技术对诊断的作用的影响。这项研究提出了一种基于集合的多视图学习方法,采用ECG增强技术,比传统的12级ECG诊断方法获得更高的性能。数据分析结果表明,所提出的模型报告的F1得分为0.840,这表现优于文献中现有的最新方法。
translated by 谷歌翻译
我们介绍了Realtime QA,这是一个动态的问答(QA)平台,该平台宣布问题并定期评估系统(此版本每周)。实时质量检查询问当前世界,质量检查系统需要回答有关新事件或信息的问题。因此,它挑战了QA数据集中的静态,常规假设,并追求瞬时应用。我们在包括GPT-3和T5在内的大型语言模型上建立了强大的基线模型。我们的基准是一项持续的努力,该初步报告在过去一个月中提出了实时评估结果。我们的实验结果表明,GPT-3通常可以根据新的退休文档正确更新其生成结果,从而突出了最新信息检索的重要性。尽管如此,我们发现GPT-3倾向于在检索文件时返回过时的答案,这些文件没有提供足够的信息来找到答案。这表明了未来研究的重要途径:开放式域质量检查系统是否可以确定无法回答的案例,并与用户甚至检索模块进行通信以修改检索结果?我们希望实时质量检查能够刺激问题答案及其他问题的瞬时应用。
translated by 谷歌翻译