如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
我们为通过连续时间(非策略)梯度下降而训练的分类器建立了一个崩解的Pac-bayesian结合。与Pac-Bayesian环境中的标准配置相反,我们的结果适用于确定性的培训算法,以随机初始化为条件,而无需任何$ \ textit {de-randomisation} $ step。我们对我们提出的界限的主要特征进行了广泛的讨论,并在分析和经验上研究了它在线性模型上的行为,从而找到了有希望的结果。
translated by 谷歌翻译
参考分辨率旨在识别说话者所引用的实体,在现实世界中更为复杂:新的指称者可以由代理商参与和/或仅仅因为属于共享的物理设置而创建和/或显着。我们的重点是在多模式对话中解决对大屏幕显示上的可视化的引用;至关重要的是,参考分辨率直接参与创建新的可视化的过程。我们描述了通过语言和手势以及新实体建立在大屏幕上出现的可视化的用户引用的注释,这是由于执行用户请求创建新可视化而产生的。我们还描述了我们的参考分辨率管道,该管道依赖于信息状态体系结构来维护对话环境。我们报告有关检测和解决参考文献的结果,模型上下文信息的有效性以及创建可视化的请求不足。我们还尝试了常规的CRF和深度学习 /变压器模型(Bilstm-CRF和Bert-CRF),以在用户话语文本中标记参考。我们的结果表明,尽管CRF仍然表现出色,但转移学习显着提高了深度学习方法的性能,这表明传统方法可能会更好地概括为低资源数据。
translated by 谷歌翻译
问答系统被认为是流行且经常有效的信息在网络上寻求信息的手段。在这样的系统中,寻求信息者可以通过自然语言提出问题来获得对他们的查询的简短回应。交互式问题回答是一种最近提出且日益流行的解决方案,它位于问答和对话系统的交集。一方面,用户可以以普通语言提出问题,并找到对她的询问的实际回答;另一方面,如果在初始请求中有多个可能的答复,很少或歧义,则系统可以将问题交通会话延长到对话中。通过允许用户提出更多问题,交互式问题回答使用户能够与系统动态互动并获得更精确的结果。这项调查提供了有关当前文献中普遍存在的交互式提问方法的详细概述。它首先要解释提问系统的基本原理,从而定义新的符号和分类法,以将所有已确定的作品结合在统一框架内。然后,根据提出的方法,评估方法和数据集/应用程序域来介绍和检查有关交互式问题解答系统的审查已发表的工作。我们还描述了围绕社区提出的特定任务和问题的趋势,从而阐明了学者的未来利益。 GitHub页面的综合综合了本文献研究中涵盖的所有主要主题,我们的工作得到了进一步的支持。 https://sisinflab.github.io/interactive-question-answering-systems-survey/
translated by 谷歌翻译
软气动执行器已经在许多软机器人系统中看到了应用,其压力驱动的性质提出了控制其运动的独特挑战和机会。在这项工作中,我们提出了一个新概念:通过末端几何形状设计和控制气动执行器。我们演示了一个新颖的执行器类,称为折叠气动人造肌肉(Foldpam),该肌肉具有一个薄纤维的空气袋,两侧对称折叠。改变执行器的折叠部分会改变最终约束,从而改变力 - 应变关系。我们通过测量具有各种长度和折叠量的单个foldpam单元的力 - 应变关系来实验研究这一变化。除静态几何单元外,驱动的FOLDPAM设备还设计为产生末端几何形状的连续,按需调整,从而实现闭环位置控制,同时保持恒定压力。使用设备的实验表明几何控制允许进入力 - 应变平面上的不同区域,并且闭环几何控制可以在驱动范围的0.5%以内实现误差。
translated by 谷歌翻译
关键基础设施(CI)的安全和安全问题正在增长,因为攻击者越来越多地采用无人机作为敏感领空中的攻击矢量,例如机场,军事基地,城市中心和拥挤的地方。由于违法行为和限制空域的入侵,无人机的迅速扩散,用于商品,运输娱乐活动和其他商业应用程序引起了CI操作员的严重关注。在这种情况下,需要一个具有成本效益的框架来检测,分类和确定无人机的存在。在本文中,我们证明了CI操作员可以使用名为Uranus的廉价基于RF的检测框架来检测,分类和识别及时有效的无人机区域的无人机区域。我们的实验表明,通过使用随机森林分类器,我们在一个或多个特定的无人机的分类中达到了93.4%的分类精度。跟踪性能的平均值= 0.3650,MSE = 0.9254和R2 = 0.7502,其准确度达到了精度。我们的框架已被发布为开源,以使社区能够验证我们的发现,并将天王星作为现成的基础进行进一步分析。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
在几乎不可预测且通常严重的主题运动的情况下获得的多个MR Slices的胎儿大脑的体积重建是一项具有挑战性的任务,对切片转换的初始化非常敏感。我们建议使用经过合成转换数据训练的变压器提出了一种新型的切片到体积的注册方法,该数据将MR Slices的多个堆栈模拟为序列。通过注意机制,我们的模型会自动检测切片之间的相关性,并使用来自其他切片的信息预测一个切片的转换。我们还估计了基础3D卷,以帮助切片到体积的注册,并交替更新音量和转换以提高准确性。合成数据的结果表明,与现有的最新方法相比,我们的方法可实现较低的注册误差和更好的重建质量。还进行了使用现实世界中MRI数据的实验,以证明该模型在严重的胎儿运动下提高3D重建质量的能力。
translated by 谷歌翻译
这项工作讨论了如何通过链接技术导致监督学习算法的预期概括误差的上限。通过开发一个一般的理论框架,我们根据损失函数的规律性及其链式对应物建立二元性界限,这可以通过将损失从损失从其梯度提升到其梯度来获得。这使我们能够根据Wasserstein距离和其他概率指标重新衍生从文献中绑定的链式相互信息,并获得新颖的链接信息理论理论范围。我们在一些玩具示例中表明,链式的概括结合可能比其标准对应物明显更紧,尤其是当算法选择的假设的分布非常集中时。关键字:概括范围;链信息理论范围;相互信息;瓦斯堡的距离; Pac-Bayes。
translated by 谷歌翻译
作为对定量设定理论推理的贡献,提出了形式的文字的连词的翻译$ x = y \ setminus z $,$ x \ neq y \ setminus z $,而$ z = \ {x} $ ,其中$ x,y,z $代表在von Neumann Universe的von neumann Universe of sets,进入了一个相当简单的联合正常形式的无关的布尔公式。目标语言中的公式涉及在集合的布尔环上方的变量以及指定平等,非脱节和包含的差分运算符和重构。而且,每个转换的结果是字符的形式$ x = y \ setminus z $,$ x \ neq y \ setminus z $和孤立文字的暗示,其后果是夹杂物(严格或变量之间的非严格)或变量之间的相位性。除了反映简单自然的语义之外,该语义确保了保持性保存,所提出的翻译具有二次算法的时间复杂性,并且桥梁两种语言都已知具有NP完全可靠性问题。
translated by 谷歌翻译