计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
机器学习方法利用多参数生物标志物,特别是基于神经影像动物,具有改善痴呆早期诊断的巨大潜力,并预测哪些个体存在发展痴呆的风险。对于机器学习领域的基准算法和痴呆症中的神经影像症,并评估他们在临床实践中使用的潜力和临床试验,七年的大挑战已经在过去十年中组织:Miriad,Alzheimer的疾病大数据梦,Caddementia,机器学习挑战,MCI神经影像动物,蝌蚪和预测分析竞争。基于两个挑战评估框架,我们分析了这些大挑战如何互相补充研究问题,数据集,验证方法,结果和影响。七个大挑战解决了与(临床前)痴呆症(临床)痴呆症的筛查,诊断,预测和监测有关的问题。临床问题,任务和性能指标几乎没有重叠。然而,这具有提供对广泛问题的洞察力的优势,它也会限制对挑战的结果的验证。通常,获胜算法执行严格的数据预处理并组合了广泛的输入特征。尽管最先进的表演,但临床上没有挑战评估的大部分方法。为了增加影响,未来的挑战可以更加关注统计分析,对其与高于阿尔茨海默病的临床问题,以及使用超越阿尔茨海默病神经影像疾病的临床问题,以及超越阿尔茨海默病的临床问题。鉴于过去十年中汲取的潜力和经验教训,我们在未来十年及其超越的机器学习和神经影像中的大挑战前景兴奋。
translated by 谷歌翻译
简介:人工智能(AI)有可能促进CMR分析以进行生物标志物提取的自动化。但是,大多数AI算法都经过特定输入域(例如单扫描仪供应商或医院量化成像协议)的培训,并且当从其他输入域中应用于CMR数据时,缺乏最佳性能的鲁棒性。方法:我们提出的框架包括一种基于AI的算法,用于对短轴图像的双脑室分割,然后进行分析后质量控制,以检测错误的结果。分割算法在来自两家NHS医院(n = 2793)的大型临床CMR扫描数据集上进行了培训,并在此数据集(n = 441)和五个外部数据集(n = 6808)上进行了验证。验证数据包括使用所有主要供应商的CMR扫描仪在12个不同中心获得的一系列疾病的患者的CMR扫描。结果:我们的方法产生的中位骰子得分超过87%,转化为观察者间变异范围内心脏生物标志物中的中值绝对错误:<8.4ml(左心室),<9.2ml(右心室),<13.3G(左心室),<13.3G(左心室所有数据集的心室质量),<5.9%(射血分数)。根据心脏疾病和扫描仪供应商的表型的病例分层显示出良好的一致性。结论:我们表明,我们提出的工具结合了在大规模多域CMR数据集中训练的最先进的AI算法和分析后质量控制,使我们能够从多个中心,供应商和心脏病。这是AI算法临床翻译的基本步骤。此外,我们的方法以无需额外的计算成本而产生一系列心脏功能(填充和弹出率,区域壁运动和应变)的附加生物标志物。
translated by 谷歌翻译
在高风险领域中采用卷积神经网络(CNN)模型受到了他们无法满足社会对决策透明度的需求的阻碍。到目前为止,已经出现了越来越多的方法来开发可通过设计解释的CNN模型。但是,这样的模型无法根据人类的看法提供解释,同时保持有能力的绩效。在本文中,我们通过实例化固有可解释的CNN模型的新颖的一般框架来应对这些挑战,该模型名为E pluribus unum unum Change Chandn(EPU-CNN)。 EPU-CNN模型由CNN子网络组成,每个工程都会收到表达感知特征的输入图像的不同表示,例如颜色或纹理。 EPU-CNN模型的输出由分类预测及其解释组成,其基于输入图像不同区域的感知特征的相对贡献。 EPU-CNN模型已在各种可公开可用的数据集以及贡献的基准数据集上进行了广泛的评估。医学数据集用于证明EPU-CNN在医学中对风险敏感的决策的适用性。实验结果表明,与其他CNN体系结构相比,EPU-CNN模型可以实现可比或更好的分类性能,同时提供人类可感知的解释。
translated by 谷歌翻译
话语关系通过明确的内容以及生产者和口译员之间的共享或隐性知识来解释的想法在话语研究和语言学中无处不在。但是,尚不清楚论证词汇语义的实际贡献。我们提出了一种计算方法来分析PDTB语料库中的对比和特许关系。我们的作品阐明了词汇语义在多大程度上有助于信号的明确和隐式话语关系,并阐明了两者中不同部分的贡献。这项研究有助于弥合语料库语言学和计算语言学之间的差距,通过根据其论点的同义词和反义词提出透明和可解释的话语关系模型。
translated by 谷歌翻译
尽管过度拟合并且更普遍地,双重下降在机器学习中无处不在,但增加了最广泛使用的张量网络的参数数量,但矩阵乘积状态(MPS)通常会导致先前研究中的测试性能单调改善。为了更好地理解由MPS参数参数的体系结构的概括属性,我们构建了人工数据,这些数据可以由MPS精确建模并使用不同数量的参数训练模型。我们观察到一维数据的模型过于拟合,但也发现,对于更复杂的数据而言,过度拟合的意义较低,而对于MNIST图像数据,我们找不到任何过拟合的签名。我们推测,MPS的概括属性取决于数据的属性:具有一维数据(MPS ANSATZ是最合适的)MPS容易拟合的数据,而使用更复杂的数据,该数据不能完全适合MPS,过度拟合过度。可能不那么重要。
translated by 谷歌翻译
鉴于问题的复杂性,从各种传感器模式到高度纠缠的对象布局,再到多样化的项目属性和抓地力类型,因此对视觉驱动的机器人系统提出了重大挑战。现有方法通常从一个角度解决问题。各种项目和复杂的垃圾箱场景需要多种选择策略以及高级推理。因此,要构建可靠的机器学习算法来解决这项复杂的任务,需要大量的全面和高质量的数据。在现实世界中收集此类数据将太昂贵,时间过高,因此从可伸缩性角度来看。为了解决这个大型,多样化的数据问题,我们从最近的元素概念上的增长中获得了灵感,并引入了MetagraspNet,这是一种通过基于物理学的元合成构建的大规模的照片现实垃圾箱挑选数据集。所提出的数据集在82种不同的文章类型上包含217K RGBD图像,并具有完整的注释,可用于对象检测,Amodal感知,关键点检测,操纵顺序和平行jaw和真空吸尘器的Ambidextrous Grasp标签。我们还提供了一个真实的数据集,该数据集由超过2.3k全面注释的高质量RGBD图像组成,分为5个困难级别和一个看不见的对象,以评估不同的对象和布局属性。最后,我们进行了广泛的实验,表明我们提出的真空密封模型和合成数据集实现了最先进的性能,并将其推广到现实世界用例。
translated by 谷歌翻译
这项工作将病毒在网络上传播的模型与其等效的神经网络表示。基于此连接,我们提出了一种新的神经网络体系结构,称为传输神经网络(Transnns),其中激活功能主要与链接相关,并允许具有不同的激活水平。此外,这种连接导致具有可调或可训练参数的三个新激活函数的发现和推导。此外,我们证明具有单个隐藏层和固定非零偏置项的Transns是通用函数近似器。最后,我们提出了基于Transnn的连续时间流行网络模型的新基本派生。
translated by 谷歌翻译
无监督的异常检测和定位是至关重要的任务,因为不可能收集和标记所有可能的异常。许多研究强调了整合本地和全球信息以实现异常分割的重要性。为此,对变压器的兴趣越来越大,它允许对远程内容相互作用进行建模。但是,对于大多数图像量表而言,通过自我注意力的全球互动通常太贵了。在这项研究中,我们介绍了Haloae,这是第一个基于Halonet的局部2D版本的自动编码器。使用Haloae,我们创建了一个混合模型,该模型结合了卷积和局部2D块的自我发项层,并通过单个模型共同执行异常检测和分割。我们在MVTEC数据集上取得了竞争成果,表明结合变压器的视觉模型可以受益于自我发挥操作的本地计算,并为其他应用铺平道路。
translated by 谷歌翻译
在许多低到中型收入(LMIC)国家中,超声用于评估胸腔积液。通常,积液的程度是由超声检查员手动测量的,导致明显的内部/观察者间变异性。在这项工作中,我们研究了深度学习(DL)以自动化超声图像中胸腔积液分割的过程。在在LMIC设置中获得的两个数据集上,我们使用NNU-NET DL模型获得了中位骰子相似性系数(DSC)为0.82和0.74。我们还研究了DL模型中坐标卷积的使用,发现这会导致第一个数据集的中间DSC在0.85上的统计学显着改善,而第二个数据集则没有显着更改。这项工作首次展示了DL在LMIC环境中超声评估的过程中自动化的潜力,在LMIC环境中,通常缺乏经验丰富的放射科医生来执行此类任务。
translated by 谷歌翻译