基于注意的蛋白质序列训练的基于注意力的模型在分类和与人工智能驱动的蛋白质设计相关的分类和生成任务方面取得了令人难以置信的成功。但是,我们对非常大规模的模型和数据在有效的蛋白质模型开发中发挥作用。我们介绍了一套名为progen2的蛋白质语言模型的套件,该模型最高为6.4b参数,并在从基因组,宏基因组和免疫曲目数据库中绘制的不同序列数据集上进行了培训。 GEECEN2模型在捕获观察到的进化序列的分布,生成新型的可行序列并预测蛋白质适应性的情况下显示出最先进的性能,而无需额外的芬特。随着蛋白质序列的大型大小和原始数量继续变得更加广泛,我们的结果表明,越来越多的重点需要放在提供给蛋白质序列模型的数据分布上。我们在https://github.com/salesforce/progen上发布了PECEN2模型和代码。
translated by 谷歌翻译