展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
嗜睡是驾驶员和交通事故主要原因之一的主要关注点。认知神经科学和计算机科学的进步已通过使用脑部计算机界面(BCIS)和机器学习(ML)来检测驾驶员的嗜睡。然而,几个挑战仍然开放,应该面对。首先,文献中缺少使用一组ML算法的多种ML算法对嗜睡检测性能的全面评估。最后,需要研究适合受试者组的可扩展ML模型的检测性能,并将其与文献中提出的单个模型进行比较。为了改善这些局限性,这项工作提出了一个智能框架,该框架采用了BCIS和基于脑电图(EEG)的功能,以检测驾驶场景中的嗜睡。 SEED-VIG数据集用于喂食不同的ML回归器和三类分类器,然后评估,分析和比较单个受试者和组的表现最佳模型。有关单个模型的更多详细信息,随机森林(RF)获得了78%的F1分数,改善了通过文献中使用的模型(例如支持向量机(SVM))获得的58%。关于可扩展模型,RF达到了79%的F1得分,证明了这些方法的有效性。所学的经验教训可以总结如下:i)不仅SVM,而且文献中未充分探索的其他模型与嗜睡检测有关,ii)ii)适用于受试者组的可伸缩方法也有效地检测嗜睡,即使新受试者也是如此评估模型培训中未包括的。
translated by 谷歌翻译
这项研究提出了一种新的数据库和方法,以检测由于酒精,药物消耗和昏昏欲睡而导致的警报条件的减少,而近亲(NIR)眼球周围眼部图像。该研究的重点是确定外部因素对中枢神经系统(CNS)的影响。目的是分析这如何影响虹膜和学生运动行为,以及是否可以用标准的IRIS NIR捕获装置对这些更改进行分类。本文提出了修改的MobileNetV2,以对来自酒精/药物/嗜睡影响的受试者拍摄的虹膜NIR图像进行分类。结果表明,基于MobileNETV2的分类器可以在耐心等方面从饮酒和药物消耗后捕获的虹膜样品的不合适性条件,分别检测精度分别为91.3%和99.1%。嗜睡状况是最具挑战性的72.4%。对于属于FIT/UNFIT类的两类分组图像,该模型的准确度分别为94.0%和84.0%,使用的参数数量较小,而不是标准的深度学习网络算法。这项工作是开发自动系统以对“适合值班”进行分类并防止因酒精/吸毒和嗜睡而导致事故的生物识别应用程序迈出的一步。
translated by 谷歌翻译
这项研究提出了一种检测近距离红外(NIR)眼周眼图像的酒精消耗的方法。该研究的重点是确定外部因素(例如酒精对中枢神经系统(CNS))的影响。目的是分析这如何影响虹膜和学生运动,以及是否可以使用标准的Iris NIR相机捕获这些更改。本文提出了一个新型的融合胶囊网络(F-CAPSNET),以对饮酒受试者拍摄的虹膜NIR图像进行分类。结果表明,使用一半参数作为标准胶囊网络算法,F-CAPSNET算法可以检测IRIS NIR图像中的酒精消耗,精度为92.3%。这项工作是开发自动系统以估计“适合值班”并防止因饮酒而导致事故的一步。
translated by 谷歌翻译
可渴望可以理解为ANSCOMBE和AUMANN的贝叶斯决策理论的扩展,以延伸到预期公用事业集。可取性的核心在于测量奖励的量表线性的假设。它是一个传统的假设,用于得出预期的效用模型,该模型与理性决策的一般表示相冲突。尤其是,阿莱斯(Allais)在1953年以著名的悖论指出了这一点。我们注意到,当我们将可取性视为逻辑理论时,公用事业量表起着封闭操作员的作用。该观察结果使我们能够通过通用闭合操作员表示实用程序量表来扩展到非线性情况。新理论直接以实际的非线性货币(货币)表达了奖励,这在野蛮的精神上很大程度上表达,同时可以说将基础假设削弱到最低限度。我们从一组赌博及其上价和高价(预防)的角度来表征新理论的主要特性。我们展示了Allais悖论如何在新理论中找到解决方案,并讨论了该理论中概率集的作用。
translated by 谷歌翻译
交通事故是年轻人死亡的主要原因,这一问题今天占了大量受害者。已经提出了几种技术来预防事故,是脑部计算机界面(BCIS)最有前途的技术之一。在这种情况下,BCI被用来检测情绪状态,集中问题或压力很大的情况,这可能在道路上起着基本作用,因为它们与驾驶员的决定直接相关。但是,在驾驶场景中,没有广泛的文献应用BCI来检测受试者的情绪。在这种情况下,需要解决一些挑战,例如(i)执行驾驶任务对情绪检测的影响以及(ii)在驾驶场景中哪些情绪更可检测到的情绪。为了改善这些挑战,这项工作提出了一个框架,该框架着重于使用机器学习和深度学习算法的脑电图检测情绪。此外,已经设计了两个场景的用例。第一种情况是聆听声音作为要执行的主要任务,而在第二种情况下,聆听声音成为次要任务,这是使用驱动模拟器的主要任务。这样,它旨在证明BCI在这种驾驶方案中是否有用。结果改善了文献中现有的结果,可在发现两种情绪(非刺激性和愤怒)中达到99%的准确性,三种情绪(非刺激性,愤怒和中立)的93%,四种情绪(非刺激)(非 - 刺激,愤怒,中立和喜悦)。
translated by 谷歌翻译
体外测试是对医疗设备毒性进行动物测试的替代方法。检测细胞作为第一步,细胞专家根据显微镜下的细胞毒性等级评估细胞的生长。因此,人类疲劳在错误制造中起着作用,使使用深度学习吸引力。由于培训数据注释的高成本,需要一种无手动注释的方法。我们提出了对不完美标签(SISSI)的无缝迭代半监督校正(SISSI),这是一种以半监督方式训练具有嘈杂和缺失注释的对象检测模型的新方法。我们的网络从使用简单的图像处理算法生成的嘈杂标签中学习,这些算法在自我训练期间迭代校正。由于伪标签中缺少边界框的性质,这会对训练产生负面影响,因此我们建议使用无缝克隆对动态生成的合成样图像进行训练。我们的方法成功地提供了一种自适应的早期学习校正技术来进行对象检测。事实证明,在分类和语义分割中应用的早期学习校正的组合被证明是比通常的半监督方法在三个不同的读者中使用> 15%的AP和> 20%的AR。我们的代码可在https://github.com/marwankefah/sissi上找到。
translated by 谷歌翻译
现代神经网络使用构建块,例如与任意2D翻译一样的卷积。但是,这些香草块并不等于投影歧管中的任意3D翻译。即便如此,所有单眼3D检测器都使用香草块来获得3D坐标,这是为此而不是为香草块设计的任务。本文迈出了朝着探索综合的第一步,以在投影歧管中进行任意3D翻译。由于该深度是最难估计的单眼检测,因此本文提出了深度模棱两可的网络(deviant),该网络(deviant)构建了现有的量表等效性的可检测块。结果,偏差与投影歧管中的深度翻译相等,而香草网络却没有。额外的深度竞争力迫使这种偏差学习一致的深度估计,因此,越来越多的人在纯图像类别中的Kitti和Waymo数据集上实现了最新的单眼3D检测结果,并使用额外信息竞争地对方法进行了竞争性执行。此外,在跨数据库评估中,异常比香草网络更好。 https://github.com/abhi1kumar/deviant的代码和模型
translated by 谷歌翻译
由于它们过去证明的准确性较低,因此对3D摄像机进行步态分析的使用受到了高度质疑。本文介绍的研究的目的是提高机器人安装在人体步态分析中的估计的准确性,通过应用监督的学习阶段。 3D摄像头安装在移动机器人中,以获得更长的步行距离。这项研究表明,通过使用从认证的Vicon系统获得的数据训练的人工神经网络对相机的原始估计进行后处理,从而改善了运动步态信号和步态描述符的检测。为此,招募了37名健康参与者,并使用ORBBEC ASTRA 3D摄像头收集了207个步态序列的数据。有两种基本的训练方法:使用运动学步态信号并使用步态描述符。前者试图通过减少误差并增加相对于Vicon系统的相关性来改善运动步态信号的波形。第二个是一种更直接的方法,专注于直接使用步态描述符训练人工神经网络。在训练之前和之后测量了3D摄像头的精度。在两种训练方法中,都观察到了改进。运动步态信号显示出较低的错误和相对于地面真理的较高相关性。检测步态描述符的系统的准确性也显示出很大的改进,主要是运动学描述符,而不是时空。在比较两种训练方法时,不可能定义哪个是绝对最好的。因此,我们认为,培训方法的选择将取决于要进行的研究的目的。这项研究揭示了3D摄像机的巨大潜力,并鼓励研究界继续探索他们在步态分析中的使用。
translated by 谷歌翻译
磁共振成像(MRI)是中风成像的中心方式。它被用来接受患者的治疗决定,例如选择患者进行静脉溶栓或血管内治疗。随后在住院期间使用MRI来通过可视化梗塞核心大小和位置来预测结果。此外,它可以用来表征中风病因,例如(心脏) - 栓塞和非胚胎中风之间的区分。基于计算机的自动医疗图像处理越来越多地进入临床常规。缺血性中风病变分割(ISLE)挑战的先前迭代有助于生成鉴定急性和急性缺血性中风病变分割的基准方法。在这里,我们介绍了一个专家注册的多中心MRI数据集,以分割急性到亚急性中风病变。该数据集包括400个多供应商MRI案例,中风病变大小,数量和位置的可变性很高。它分为n = 250的训练数据集和n = 150的测试数据集。所有培训数据将公开可用。测试数据集将仅用于模型验证,并且不会向公众发布。该数据集是Isles 2022挑战的基础,目的是找到算法方法,以实现缺血性中风的稳健和准确分割算法的开发和基准测试。
translated by 谷歌翻译