在这项工作中,我们解决了在概率一个约束下找到受约束的马尔可夫决策过程的可行策略的问题。我们认为,静止的政策不足以解决这个问题,并且通过赋予控制器具有标量数量,所谓的预算来找到丰富的政策,这些控制器可以跟踪代理是如何违反约束的关闭。我们表明,可以安全地行动所需的最小预算作为Bellman的操作员的最小固定点,我们分析其收敛性。我们还展示了如何在不知道马尔可夫决策过程的真正内核时学习此数量,同时提供示例复杂性界限。知道这种最小预算的实用性依赖于它可以帮助通过缩小代理必须导航的状态空间区域来搜索最佳或接近最佳策略。仿真示出了对通常使用的预期限制的概率一个约束的不同性质。
translated by 谷歌翻译
磁共振成像(MRI)是中风成像的中心方式。它被用来接受患者的治疗决定,例如选择患者进行静脉溶栓或血管内治疗。随后在住院期间使用MRI来通过可视化梗塞核心大小和位置来预测结果。此外,它可以用来表征中风病因,例如(心脏) - 栓塞和非胚胎中风之间的区分。基于计算机的自动医疗图像处理越来越多地进入临床常规。缺血性中风病变分割(ISLE)挑战的先前迭代有助于生成鉴定急性和急性缺血性中风病变分割的基准方法。在这里,我们介绍了一个专家注册的多中心MRI数据集,以分割急性到亚急性中风病变。该数据集包括400个多供应商MRI案例,中风病变大小,数量和位置的可变性很高。它分为n = 250的训练数据集和n = 150的测试数据集。所有培训数据将公开可用。测试数据集将仅用于模型验证,并且不会向公众发布。该数据集是Isles 2022挑战的基础,目的是找到算法方法,以实现缺血性中风的稳健和准确分割算法的开发和基准测试。
translated by 谷歌翻译
由于货运车数量的增加,在城市地区采用了电动汽车(EV),以减少环境污染和全球变暖。但是,路由最后一英里物流的轨迹仍在继续影响社会和经济可持续性时仍然存在缺陷。因此,在本文中,提出了一种称为超高神性自适应模拟退火的超增压性(HH)方法,并提出了增强学习(HHASA $ _ {RL} $)。它由多军匪徒方法和自适应模拟退火(SA)元启示术算法组成,用于解决该问题称为电容的电动汽车路由问题(CEVRP)。由于充电站数量有限和电动汽车的旅行范围,因此电动汽车必须提前为电池充电时刻,并减少旅行时间和成本。 HH实施的HH改善了多个最低最低知名解决方案,并为IEEE WCCI2020竞赛的拟议基准测试获得了一些高维实例的最佳平均值。
translated by 谷歌翻译
我们为多层神经网络架构定义了一种不断微弱的完美学习算法的概念,并表明了这种算法不存在,条件是数据集的长度超过所涉及的参数的数量,并且激活功能是逻辑,坦希或罪。
translated by 谷歌翻译
我们介绍了一系列深度学习架构,用于际际关系提取,即参与者不一定在同一句中的关系。我们将这些架构应用于生物医学领域的重要用例:将生物背景分配给生化事件。在这项工作中,生物学背景被定义为观察到生物化学事件的生物系统的类型。神经架构编码并聚合相同候选上下文提到的多个出现,以确定特定事件是否提及的正确上下文。我们提出了两种广泛类型的架构:第一个类型聚合在发射分类之前关于事件的相同候选上下文的多个实例;第二种类型独立分类每个实例并使用结果投票给最终类,类似于集合方法。我们的实验表明,拟议的神经分类器具有竞争力,一些比以前的艺术传统机器学习方法的表现更好,而无需特征工程。我们的分析表明,与传统的机器学习分类器相比,神经方法特别提高精度,并且还表明了句子间关系的难度如何随着事件与上下文提升的距离而增加。
translated by 谷歌翻译
尽管编码了大量丰富和有价值的数据,但现有的数据来源主要是独立创建的,这是他们整合的重大挑战。映射语言,例如RML和R2RML,促进了将Meta-Data和将数据集成到知识图中的过程的声明性规范。除了在数据源和统一模式中表达对应关系之外,映射规则还可以包括知识提取功能。组合映射规则和函数表示强大的形式主义,以指定流水管以透明地将数据集成到知识图中。令人惊讶的是,这些形式主义没有完全调整,并且通过将ad-hoc程序执行到预处理和集成数据来创建许多知识图表。在本文中,我们提出了Eablock,一种方法将实体对齐(EA)集成为RML映射规则的一部分。 eAblock包括执行从文本属性的实体识别的功能块,并将识别的实体链接到Wikidata,DBPedia和域特定词库中的相应资源,例如UML。 EABLOCK提供可靠性和有效的技术来评估功能并转移映射以促进其在任何符合RML标准的发动机中的应用。我们有经验评估的eAblock性能,结果表明eAblock加快了需要实体识别和链接在符合最先进的RML标准的发动机的知识图形创建管道。 Eablock还通过Github存储库(https:/github.com/sdm-tib/eablock)和doi(https://doi.org/10.5281/zenodo.5779777)作为工具被公开可用作工具。
translated by 谷歌翻译
在工业环境中越来越越来越多地部署,如事物互联网(IOT)设备和网络物理系统(CPS)正在使制造域中的机器学习(ML)算法的生产使用。随着ML应用从研究超越真实工业环境中的高效,所以发生了可靠性问题。由于大多数ML型号在静态数据集上培训和评估,因此需要连续在线监测其性能来构建可靠的系统。此外,概念和传感器漂移可以随着时间的推移导致算法的准确性降低,从而损害了安全性,接受和经济学,如果未被发现,无法正确解决。在这项工作中,我们示例性地突出了在36个月的课程中记录的公开工业数据集的问题的严重性,并解释了可能的漂移来源。我们评估了制造和展示中常用的ML算法的稳健性,并且随着所有测试算法的越来越高,精度强烈地下降。我们进一步调查了如何利用不确定性估计来用于在线性能估计以及漂移检测作为朝着不断学习应用程序的第一步。结果表明,与随机森林等集合算法表现出漂移下的置信度校准的最小衰减。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
在本文中,我们使用艺术技术的神经语言模型(NLMS)在科学文献中的应用来解决从开放词汇知识库(Openkbs)的推理任务。为此目的,使用常见的Sense KB作为源任务,使用常见的Sense KB训练基于自我关注的NLM。然后在目标KB上测试NLMS,用于开放的词汇推理任务,涉及与最普遍的慢性疾病相关的科学知识(也称为非传染性疾病,NCD)。我们的结果确定了NLM,其始终如一地执行,并且在知识推断中对源代码和目标任务的重要性。此外,在我们通过检查的分析中,我们讨论了模型学到的语义规律和推理能力,同时表现出对我们援助NCD研究的方法的潜在好处的第一洞察力。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译