AI中的不同子场倾向于储存一小部分有影响力的基准。这些基准作为一系列涂抹的常见问题的支架运作,这些常见问题经常被录制为朝向灵活和更广泛的AI系统的道路上的基础里程碑。这些基准最先进的性能被广泛理解为表明对这些长期目标的进展。在这个位置纸中,我们探讨了这种基准的限制,以便在其框架中揭示构建有效性问题,作为功能“一般”的进展措施,他们被设置为。
translated by 谷歌翻译
本文的目的是描述一种从贝叶斯推理的观点来描述一种新的非参数降噪技术,其可以自动提高一个和二维数据的信噪比,例如例如,例如,天文图像和光谱。该算法迭代地评估数据的可能的平滑版本,平滑模型,获得与嘈杂测量统计上兼容的底层信号的估计。迭代基于最后一个顺利模型的证据和$ \ Chi ^ 2 $统计数据,并且我们将信号的预期值计算为整个平滑模型的加权平均值。在本文中,我们解释了算法的数学形式主义和数值实现,我们在利用真正的天文观测的电池对峰值信号,结构相似性指数和时间有效载荷来评估其性能。我们完全自适应的贝叶斯算法用于数据分析(Fabada)产生结果,没有任何参数调谐,与标准图像处理算法相当,其参数基于要恢复的真实信号进行了优化,在实际应用中不可能。诸如BM3D的最先进的非参数方法,以高信噪比提供稍微更好的性能,而我们的算法对于极其嘈杂的数据显着更准确(高于20-40 \%$相对错误,在天文领域特别兴趣的情况)。在此范围内,通过我们的重建获得的残差的标准偏差可能变得比原始测量值低的数量级。复制本报告中显示的所有结果所需的源代码,包括该方法的实现,在https://github.com/pablolyanala/fabada公开使用
translated by 谷歌翻译
机器学习技术通常应用于痴呆症预测缺乏其能力,共同学习多个任务,处理时间相关的异构数据和缺失值。在本文中,我们建议使用最近呈现的SShiba模型提出了一个框架,用于在缺失值的纵向数据上联合学习不同的任务。该方法使用贝叶斯变分推理来赋予缺失值并组合多个视图的信息。这样,我们可以将不同的数据视图与共同的潜在空间中的不同时间点相结合,并在同时建模和预测若干输出变量的同时学习每个时间点之间的关系。我们应用此模型以预测痴呆症中的诊断,心室体积和临床评分。结果表明,SSHIBA能够学习缺失值的良好归因,同时预测三个不同任务的同时表现出基线。
translated by 谷歌翻译
在本文中,我们在用于生成时间序列建模的变形式自动统计器设置中实现神经常规方程。以对象为导向的代码方法是为了允许更容易的开发和研究以及本文中使用的所有代码可以在这里找到:https://github.com/simonmoesorensen/neural-ode-project最初是重新创建的结果与基线长短短期内存AutoEncoder相比的重建。然后用LSTM编码器扩展该模型,并受到弹簧振荡形式的时间序列组成的更复杂数据的攻击。该模型显示了承诺,并且能够为所有复杂的数据重建真正的轨迹,而不是基线模型的RMSE较小。然而,它能够捕获解码器中已知数据的时间序列的动态行为,但是对于弹簧数据的任何复杂性,不能够在真正的轨迹之后产生外推。最后进行了最终实验,其中模型也以68天的太阳能生产数据呈现,并且能够重建,即使在空间很少的数据时,也能够重建和基线。最后,将模型培训时间与基线进行比较。结果发现,对于少量数据,节点方法在训练中显着较慢,而不是基线,而对于较大量的数据,节点方法将在训练中等于或更快。本文以未来的工作部分结束,该部分描述了本文中提供的工作的许多自然扩展,其中示例正在研究输入数据的重要性,包括基线模型中的外推或测试更多特定的模型设置。
translated by 谷歌翻译
了解文本文件中描述的运动很重要,因为运动的文本描述包含有关人,野生动物,商品等运动的大量地理和背景信息。我们的研究为改善我们对文本中的运动描述的理解提供了几项贡献。首先,我们展示了如何解释文本中描述的地理运动是具有挑战性的,因为一般空间术语,使得搬家不清楚的语言结构,以及许多类型的时间参考和分组等。接下来,作为克服这些挑战的一步,我们报告了人类受试者的实验,我们通过它识别人类用于区分一个运动描述的运动描述的多个重要特征(在文本中发现)。根据我们的经验结果,我们提供了在文本文档中描述的运动提供了用于计算分析的建议。我们的调查结果有助于了解有关文本描述形式的地理运动的未充分利用信息的重要特征的理解。
translated by 谷歌翻译
Gutenberg文学英语语料库(Glec,Jacobs,2018a)为数字人文,计算语言学或神经认知诗学提供了丰富的文本数据来源。在这项研究中,我们解决了GLEC中不同文学类别的差异,以及作者之间的差异。我们报告了三项研究的结果,提供i)GLEC(即儿童和青年,散文,小说,戏剧,诗歌,故事)及其> 100作者,II)语义复杂性的新措施的主题和情绪分析作为Glec(例如,Jane Austen的六个小说)的工程的文学,创造力和书籍美容的指标,以及使用语义复杂性的新功能的文本分类和作者认可的两个实验。关于两种新型措施的数据估算文本的文献,文字术语和逐步距离(Van Cranenburgh等,2019)透露,戏剧是Glec中最具文学的文学,其次是诗歌和小说。计算文本创造力的新索引(Gray等,2016)揭示了诗歌和戏剧,作为最具创造力的作者,最具创造力的作者(米尔顿,教皇,Keats,Byron或Wordsworth)。我们还为Glec的作品计算了一种新颖的言语艺术感知的美丽指数,并预测Emma是奥斯汀的大小是最美丽的小说。最后,我们证明了这些语义复杂性的这些新颖的措施是文本分类和作者认可的重要特征,以及整体预测准确性在.75到.97范围内的整体预测精度。我们的数据为阅读心理学的未来计算和实验研究以及提供了多种基准和基准,用于分析和验证其他书籍语料库的途径。
translated by 谷歌翻译
从Chaser Spacecraft发射的系绳网提供了有希望的方法,可以在轨道中捕获和处理大型空间碎片。该系绳网络系统受到影响和致动的几种不确定性来源,影响其净爆发和关闭控制的性能。然而,设计控制动作的早期可靠性的优化方法仍然具有挑战性,并计算到相对于追逐者相对于追逐者的不同发射方案和目标(碎片)状态概括。为了搜索一般和可靠的控制策略,本文介绍了一种加强学习框架,它集成了具有净动力学模拟的近端策略优化(PPO2)方法。后者允许评估基于网络的目标捕获的剧集,并估算捕获质量索引,作为PPO2的奖励反馈。在这里,在任何给定的发射方案下,学习的策略旨在根据移动网和目标的状态来模拟网络结束动作的定时。考虑了随机状态转换模型,以便在国家估算和发射致动中纳入合成不确定性。随着培训期间的显着奖励改进,训练有素的策略表明捕获性能(在广泛的发射/目标场景范围内),接近基于可靠性的优化在各个方案上运行。
translated by 谷歌翻译
最近的多任务学习研究旨在反对单一的标准化,其中培训只需最大限度地减少任务损失的总和。代替了几种Ad-hoc多任务优化算法,它受到各种假设的启发,关于使多任务设置困难的原因。这些优化器中的大多数都需要每个任务渐变,并引入重要的内存,运行时和实现开销。我们提出了一个理论分析,表明许多专业的多任务优化器可以被解释为正规化的形式。此外,我们表明,当与单任务学习的标准正则化和稳定技术耦合时,单一的标定化匹配或改善在监督和加固学习设置中复杂的多任务优化器的性能。我们相信我们的结果要求对该地区最近的研究进行关键重新评估。
translated by 谷歌翻译
数据转换(DT)是将原始数据转换为支持特定分类算法的形式的过程,并有助于分析特殊目的的数据。为了提高预测性能,我们调查了各种数据变换方法。本研究在电信行业(TCI)中的客户流失预测(CCP)背景下进行,客户疲劳是一种常见的现象。我们提出了一种与CCP问题的机器学习模型相结合的数据转换方法的新方法。我们在公开的TCI数据集中进行了实验,并在广泛使用的评估措施方面评估了性能(例如,AUC,精确,召回和F测量)。在这项研究中,我们提出了全面的比较来肯定转化方法的影响。比较结果和统计检验证明,大多数所提出的基于数据转换的优化模型显着提高了CCP的性能。总的来说,通过这份手稿介绍了电信行业的有效和优化的CCP模型。
translated by 谷歌翻译
使用精确能量功能的原子模拟可以为气体和冷凝相中的分子的功能运动提供分子水平洞察。与最近开发的和目前在整合和结合的努力与机器学习技术相结合,提供了一个独特的机会,使这种动态模拟更接近现实。这种观点界定了现场其他人的努力和您自己的工作的现状,并讨论了开放问题和未来的前景。
translated by 谷歌翻译