尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
尽管神经机器翻译(NMT)中幻觉的问题受到了一些关注,但对这种高度病理现象的研究缺乏坚实的基础。以前的工作在几种方面受到限制:它通常诉诸于放大问题的人工环境,它无视一些(常见的)幻觉类型,并且不能验证检测启发式方法的充分性。在本文中,我们为研究NMT幻觉的研究设定了基础。首先,我们在自然环境中工作,即没有人造噪声的内域数据,既不在训练中也没有推理。接下来,我们注释一个超过3.4K句子的数据集,指示不同类型的关键错误和幻觉。然后,我们转向以前使用的检测方法和两种重新访问方法,并建议使用基于玻璃盒的不确定性检测器。总体而言,我们表明,对于预防性设置,(i)先前使用的方法在很大程度上不足,(ii)序列对数概要性效果最好,并且与基于参考的方法相同。最后,我们提出了脱足素剂,这是一种减轻测试时间的简单方法,可大大降低幻觉速度。为了简化未来的研究,我们发布了用于WMT18德语英语数据的注释数据集以及模型,培训数据和代码。
translated by 谷歌翻译
动作识别是提高物理康复设备自治的重要组成部分,例如可穿戴机器人外骨骼。现有的人类行动识别算法的重点是成人应用,而不是小儿应用。在本文中,我们介绍了BabyNet,这是一个轻量重量(就可训练的参数而言)的网络结构,以识别婴儿从外体固定摄像机中采取行动的婴儿。我们开发了一个带注释的数据集,其中包括在不受约束的环境中的不同婴儿(例如,在家庭设置等)中的坐姿中执行的各种范围。我们的方法使用带注释的边界框的空间和时间连接来解释和抵消到达的开始,并检测到完整的到达动作。我们评估了我们提出的方法的效率,并将其性能与其他基于学习的网络结构进行比较,以捕获时间相互依存的能力和触及发作和偏移的检测准确性。结果表明,我们的婴儿网络可以在超过其他较大网络的(平均)测试准确性方面达到稳定的性能,因此可以作为基于视频的婴儿获得动作识别的轻量重量数据驱动框架。
translated by 谷歌翻译
在社交媒体上的工作谣言验证利用了帖子,传播和所涉及的用户的信号。基于Wikipedia的信息或值得信赖的新闻文章而无需考虑社交媒体环境,其他工作目标是识别和核实事实检查的主张。但是,缺乏将社交媒体的信息与更广泛网络的外部证据相结合的工作。为了促进这个方向的研究,我们发布了一个新颖的数据集Phemeplus,Phemeplus是Pheme基准的扩展,该数据集包含社交媒体对话以及每个谣言的相关外部证据。我们证明了将这种证据纳入改进谣言验证模型的有效性。此外,作为证据收集的一部分,我们评估了各种查询公式的方法,以识别最有效的方法。
translated by 谷歌翻译
人类机器人协作组装系统提高了工作场所的效率和生产力,但可能会增加工人的认知需求。本文提出了一个在线和定量框架,以评估与同事的互动,即人类运营商或具有不同控制策略的工业协作机器人所引起的认知工作量。该方法可以监视操作员的注意力分布和上身运动学,从而受益于低成本立体声摄像机和尖端的人工智能算法的输入图像(即头姿势估计和骨架跟踪)。三种实验场景具有工作站特征和互动方式的变化,旨在测试我们在线方法的性能,以防止最新的离线测量。结果证明,我们基于视觉的认知负荷评估有可能将其集成到新一代的协作机器人技术中。后者将使人类的认知状态监测和机器人控制策略适应改善人类舒适,人体工程学和对自动化的信任。
translated by 谷歌翻译
在混合工业环境中,工人对安全的舒适和积极的看法是成功接受和使用协作机器人的重要要求。本文提出了一个新型的人类机器人互动框架,其中根据操作员的认知工作量和压力在线对机器人行为进行了调整。该方法利用在关节空间中生成B-Spline轨迹的生成,并将多目标优化问题的公式用于在线调整机器人轨迹的总执行时间和平滑度。前者确保了工作场所的人力效率和生产力,而后者则有助于保护用户的舒适性和认知人体工程学。在典型的工业任务中评估了拟议框架的性能。结果表明,其能力可以提高人类二元组的生产率,同时减轻工人引起的认知工作量。
translated by 谷歌翻译
认识人类所采取的行动以及对他们的意图的预期是重要的推动力,可以在人类机器人团队中产生社交和成功的合作。同时,机器人应具有由协作任务或人类引起的多种目标和约束的能力。在这方面,我们提出了视力技术来执行人类的行动识别和图像分类,这些技术被整合到增强的层次二次编程(AHQP)方案中,以层次优化机器人的反应性行为和人类的人体工程学。所提出的框架允许执行任务时,可以直观地在空间中命令机器人。该实验证实了人体工程学和可用性的增加,这是减少肌肉骨骼疾病并增加自动化信任的基本参数。
translated by 谷歌翻译
侧通道攻击对加密算法构成了严重的威胁,包括广泛使用的算法,例如AES和RSA,利用硬件或软件中的算法实现,以通过计时和/或电力侧通道来提取秘密信息。软件掩蔽是一种针对电力侧通道攻击的软件缓解方法,旨在将秘密浏览依赖性隐藏在脆弱实现的功率足迹之外。但是,这种类型的软件缓解通常取决于通用编译器,这些编译器不保留非功能性能。此外,Microarchitectural特征(例如内存总线和寄存器重复使用)也可能揭示秘密信息。这些抽象在该程序的高级实施中不可见。相反,它们是在编译时间决定的。为了解决这些问题,安全工程师通常通过关闭编译器优化和/或执行本地兼容后转换来牺牲代码效率。本文提出了SECCONCG,这是一种基于约束的编译器方法,该方法生成了优化但安全的代码。 SECCONCG通过根据处理器成本模型有效地搜索最佳的低级实施来控制缓解程序的质量。在我们在MIPS32和ARM Cortex M0上进行十项掩盖实现的实验中,与非优化优化代码相比,SECCONCG的速度将生成的代码从10%提高到10%至10倍。对于安全和编译器研究人员,本文提出了一个正式模型,以生成安全的低级代码。对于软件工程师,SECCONCG提供了一种实用方法来优化保留安全属性的代码。
translated by 谷歌翻译
众所周知,HEBB的学习探索了帕夫洛夫的古典条件,而前者在过去几十年中进行了广泛的建模(例如,通过Hopfield模型和无数的主题变化),因为后者的建模在很大程度上保持了很大的含糊状态。远的;此外,完全缺乏这两个支柱之间的桥梁。实现该目标的主要困难置于所涉及的信息的本质上不同的范围:帕夫洛夫的理论是关于\ emph {concepts}之间的相关性(动态地)存储在突触矩阵中,这是由狗和一个戒指主演的著名实验所体现的钟;相反,HEBB的理论是关于相邻神经元对之间的相关性,如著名的陈述{\ em神经元一起发射汇合的}所总结。在本文中,我们依靠随机过程理论以及通过langevin方程进行神经和突触动力学模型,以证明 - 只要我们保持神经元和突触的时间表的大量分裂,Pavlov机制就会自发地发生并最终产生至恢复Hebbian内核的突触重量。
translated by 谷歌翻译
分析数据的分布转移是当今机器学习的一个不断增长的研究方向,从而导致新的基准分析,重点是提供用于研究ML模型的概括属性的合适场景。现有的基准将重点放在监督的学习上,据我们所知,没有任何不受监督的学习。因此,我们引入了一个无监督的异常检测基准,其数据随着时间的流逝而变化,该数据随着时间的推移而变化,该数据是在京都-2006+上建立的,这是一个用于网络入侵检测的流量数据集。这种数据符合转移输入分布的前提:它涵盖了较大的时间跨度($ 10美元),随着时间的推移,自然发生的变化(\ eg用户正在修改其行为模式和软件更新)。我们首先使用基本的均衡分析,T-SNE和最佳运输方法来强调数据的非平稳性质,以测量年份之间的整体分布距离。接下来,我们提出AnoShift,该协议将数据分配为IID,近乎远距离测试拆分。我们通过不同的模型(传统到经典隔离林)来验证随时间推移的性能降解。最后,我们表明,通过确认分配转移问题并正确解决该问题,与经典的IID培训相比,性能可以提高(平均最高3美元\%$)。数据集和代码可在https://github.com/bit-ml/anoshift/上找到。
translated by 谷歌翻译