移动机器人的精确位置信息对于导航和任务处理至关重要,尤其是对于多机器人系统(MRS),可以从该领域进行协作和收集有价值的数据。但是,在无法访问GPS信号(例如在环境控制,室内或地下环境中)的机器人发现很难单独使用其传感器找到。结果,机器人共享其本地信息以改善其本地化估计,使整个MRS团队受益。已经尝试使用无线电信号强度指标(RSSI)作为计算轴承信息的来源进行了几次尝试模拟基于多机器人的定位。我们还利用了通过系统中多个机器人的通信生成的无线网络,并旨在在动态环境中具有很高准确性和效率的定位代理,以共享信息融合以完善本地化估计。该估计器结构减少了一个测量相关性的来源,同时适当地纳入了其他相关性。本文提出了一个分散的多机器人协同定位系统(MRSL),以实现密集和动态的环境。每当从邻居那里收到新信息时,机器人都会更新其位置估计。当系统感觉到该地区其他机器人的存在时,它会交换位置估计并将接收到的数据合并以提高其本地化精度。我们的方法使用基于贝叶斯规则的集成,该集成已证明在计算上是有效的,适用于异步机器人通信。我们已经使用数量不同的机器人进行了广泛的仿真实验,以分析算法。 MRSL与RSSI的本地化准确性优于文献中的其他算法,对未来发展有很大的希望。
translated by 谷歌翻译
在室内和GPS拒绝环境中的无线移动设备或机器人的本地化是一个难题,特别是在传统摄像机和基于LIDAR的替代感测和本地化模式可能失败的动态场景中。我们提出了一种用于估计移动机器人的位置与在环境中部署的静态无线传感器节点(WSN)相关的方法。该方法采用新的粒子滤波器,其使用在到达方向(DOA)估计的高斯概率与移动机器人的移动模型结合使用的高斯概率来更新其权重。通过广泛的模拟和公共现实世界测量数据集,在准确性和计算效率方面评估和验证所提出的方法,与标准的最先进的本地化方法相比。结果显示了通过高计算效率平衡的高仪表级定位精度,使其能够在线使用,而无需为基于典型指纹的定位算法中的专用离线阶段使用。
translated by 谷歌翻译
多个代理的分布式任务分配引发了基本和新的控制理论和机器人问题。新的挑战是开发分布式算法,它动态地将任务分配给多个代理,而不是依赖于先前的分配信息。这项工作提出了一种基于消息到期的验证方法的多机器人任务管理的分布式方法。我们的方法通过使用基于距离和时间戳的测量来处理分布式多机器人系统中的断开引起的冲突,以验证每个机器人的任务分配。机器人模拟器平台中的仿真实验已经验证了所提出的方法的有效性。
translated by 谷歌翻译
群机器人执行觅食任务的适用性受其紧凑的尺寸和成本的启发。需要相当大量的能量来执行这些任务,特别是如果任务是连续和/或重复的。现实世界的情况,其中机器人在保持活力(生存能力)时连续执行任务,并最大限度地提高生产(性能)需要能量意识。本文提出了一种能够有意识的分布式任务分配算法来解决连续任务(例如,无限觅食),用于合作机器人以实现高效的任务。当食物返回收集箱时,我们将效率视为机器人在勘探和收集期间消耗的能量的函数。最后,所提出的节能算法最小化了充电站的总传输时间和在充电时消耗的时间消耗,最大化机器人的寿命,以执行最大的任务,以提高协作机器人的整体效率。我们对典型的贪婪基准战略(将最近的收藏箱分配给可用机器人的最近的收集箱并最大充电)效率和性能在各种方案中的效率和性能。拟议的方法显着提高了基线方法的性能和效率。
translated by 谷歌翻译
We present a new algorithm to learn a deep neural network model robust against adversarial attacks. Previous algorithms demonstrate an adversarially trained Bayesian Neural Network (BNN) provides improved robustness. We recognize the adversarial learning approach for approximating the multi-modal posterior distribution of a Bayesian model can lead to mode collapse; consequently, the model's achievements in robustness and performance are sub-optimal. Instead, we first propose preventing mode collapse to better approximate the multi-modal posterior distribution. Second, based on the intuition that a robust model should ignore perturbations and only consider the informative content of the input, we conceptualize and formulate an information gain objective to measure and force the information learned from both benign and adversarial training instances to be similar. Importantly. we prove and demonstrate that minimizing the information gain objective allows the adversarial risk to approach the conventional empirical risk. We believe our efforts provide a step toward a basis for a principled method of adversarially training BNNs. Our model demonstrate significantly improved robustness--up to 20%--compared with adversarial training and Adv-BNN under PGD attacks with 0.035 distortion on both CIFAR-10 and STL-10 datasets.
translated by 谷歌翻译
Recent work reported the label alignment property in a supervised learning setting: the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix. Inspired by this observation, we derive a regularization method for unsupervised domain adaptation. Instead of regularizing representation learning as done by popular domain adaptation methods, we regularize the classifier so that the target domain predictions can to some extent ``align" with the top singular vectors of the unsupervised data matrix from the target domain. In a linear regression setting, we theoretically justify the label alignment property and characterize the optimality of the solution of our regularization by bounding its distance to the optimal solution. We conduct experiments to show that our method can work well on the label shift problems, where classic domain adaptation methods are known to fail. We also report mild improvement over domain adaptation baselines on a set of commonly seen MNIST-USPS domain adaptation tasks and on cross-lingual sentiment analysis tasks.
translated by 谷歌翻译
The link with exponential families has allowed $k$-means clustering to be generalized to a wide variety of data generating distributions in exponential families and clustering distortions among Bregman divergences. Getting the framework to work above exponential families is important to lift roadblocks like the lack of robustness of some population minimizers carved in their axiomatization. Current generalisations of exponential families like $q$-exponential families or even deformed exponential families fail at achieving the goal. In this paper, we provide a new attempt at getting the complete framework, grounded in a new generalisation of exponential families that we introduce, tempered exponential measures (TEM). TEMs keep the maximum entropy axiomatization framework of $q$-exponential families, but instead of normalizing the measure, normalize a dual called a co-distribution. Numerous interesting properties arise for clustering such as improved and controllable robustness for population minimizers, that keep a simple analytic form.
translated by 谷歌翻译
事件传感是生物启发的飞行指导和控制系统中的主要组成部分。我们探讨了事件摄像机在腹侧着陆期间与表面进行时间接触(TTC)的用法。这是通过估计差异(逆TTC)的差异来实现的,即径向光流的速率,是从着陆期间产生的事件流。我们的核心贡献是针对基于事件的差异估计的一种新颖的对比度最大化公式,以及一种分支和结合算法,可准确地最大化对比度并找到最佳的差异值。进行GPU加速度以加快全球算法。另一个贡献是一个新的数据集,其中包含来自腹面着陆的真实事件流,该数据集用于测试和基准我们的方法。由于全局优化,与其他启发式差异估计器或基于事件的光流方法相比,我们的算法更有能力恢复真正的分歧。随着GPU加速,我们的方法还可以实现竞争性的运行时间。
translated by 谷歌翻译
随着人工智能的最新进展,可以在人类日常生活的各个方面看到其应用。从语音助手到移动医疗保健和自动驾驶,我们依靠AI方法的性能来完成许多关键任务;因此,必须以适当的手段进行预防损坏的方式主张模型的性能。通常,AI模型的短缺,尤其是深度机器学习,当面对数据分布的变化时,性能下降。尽管如此,在现实世界应用中始终期望这些转变。因此,已经出现了一个研究领域,重点是检测分布外数据子集并实现更全面的概括。此外,由于许多基于深度学习的模型在基准数据集上取得了近乎完美的结果,因此需要评估这些模型的可靠性和可靠性以推向现实世界应用程序的需求,这比以往任何时候都更加强烈。这引起了越来越多的研究领域的研究和领域的概括,这引起了对从各个角度比较这些研究进行比较的调查的需求,并突出了它们的平直和弱点。本文提出了一项调查,除了审查该领域的70多篇论文外,还提出了未来作品的挑战和方向,并为各种类型的数据转移和解决方案提供了统一的外观,以更好地泛化。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)在各种现实世界的网络安全应用程序(例如网络和多媒体安全)中表现出了有希望的性能。但是,CNN结构的潜在脆弱性构成了主要的安全问题,因此不适合用于以安全为导向的应用程序,包括此类计算机网络。保护这些体系结构免受对抗性攻击,需要使用挑战性攻击的安全体系结构。在这项研究中,我们提出了一种基于合奏分类器的新型体系结构,该结构将1级分类(称为1C)的增强安全性与在没有攻击的情况下的传统2级分类(称为2C)的高性能结合在一起。我们的体系结构称为1.5级(Spritz-1.5c)分类器,并使用最终密度分类器,一个2C分类器(即CNNS)和两个并行1C分类器(即自动编码器)构造。在我们的实验中,我们通过在各种情况下考虑八次可能的对抗性攻击来评估我们提出的架构的鲁棒性。我们分别对2C和Spritz-1.5c体系结构进行了这些攻击。我们研究的实验结果表明,I-FGSM攻击对2C分类器的攻击成功率(ASR)是N-Baiot数据集训练的2C分类器的0.9900。相反,Spritz-1.5C分类器的ASR为0.0000。
translated by 谷歌翻译