多年来,卷积神经网络(CNN)已成为多种计算机视觉任务的事实上的标准。尤其是,基于开创性体系结构(例如具有跳过连接的U形模型)或具有金字塔池的Artous卷积的深度神经网络已针对广泛的医学图像分析任务量身定制。此类架构的主要优点是它们容易拘留多功能本地功能。然而,作为一般共识,CNN无法捕获由于卷积操作的固有性能的内在特性而捕获长期依赖性和空间相关性。另外,从全球信息建模中获利的变压器源于自我发项机制,最近在自然语言处理和计算机视觉方面取得了出色的表现。然而,以前的研究证明,局部和全局特征对于密集预测的深层模型至关重要,例如以不同的形状和配置对复杂的结构进行分割。为此,本文提出了TransDeeplab,这是一种新型的DeepLab样纯变压器,用于医学图像分割。具体而言,我们用移动的窗口利用层次旋转式变形器来扩展DeepLabV3并建模非常有用的空间金字塔池(ASPP)模块。对相关文献的彻底搜索结果是,我们是第一个用基于纯变压器模型对开创性DeepLab模型进行建模的人。关于各种医学图像分割任务的广泛实验证明,我们的方法在视觉变压器和基于CNN的方法的合并中表现出色或与大多数当代作品相提并论,并显着降低了模型复杂性。代码和训练有素的模型可在https://github.com/rezazad68/transdeeplab上公开获得
translated by 谷歌翻译
神经科学研究的一种基本方法是基于神经心理学和行为措施,即某些因素(例如,与生活事件相关)是否与结果(例如抑郁症)有关。近年来,深度学习已成为通过预测一系列因素的结果并确定推动预测的最“信息性”的结果,成为进行此类分析的潜在替代方法。但是,这种方法的影响有限,因为其发现与支持假设的因素的统计意义无关。在本文中,我们根据排列测试的概念提出了一种灵活且可扩展的方法,该方法将假设检验集成到数据驱动的深度学习分析中。我们将我们的方法应用于对青春期酒精和神经发育联盟(NCANDA)的621名青少年参与者的年度自我报告评估,以预测负面价,这是根据NIMH研究领域标准(RDOC)的重大抑郁症的症状。我们的方法成功地识别了进一步解释症状的危险因素类别。
translated by 谷歌翻译
将机器学习算法转换为临床应用需要解决与解释性有关的挑战,例如考虑混杂变量(或元数据)的影响。混杂变量会影响输入训练数据和目标输出之间的关系。当我们在此类数据上训练模型时,混杂的变量会偏向于学习功能的分布。最近有前途的解决方案元数据归一化(MDN)估计了基于不可训练的封闭形式解决方案的元数据与每个特征之间的线性关系。但是,该估计受到迷你批量的样本量的限制,因此可能导致该方法在训练过程中不稳定。在本文中,我们通过应用罚款方法(称为PDMN)扩展了MDN方法。我们将问题投入到双层嵌套的优化问题中。然后,我们使用惩罚方法近似此优化问题,以便MDN层中的线性参数可以训练并在所有样本上学习。这使PMDN可以插入任何架构,甚至可以运行批处理级操作,例如变形金刚和经常性模型。我们在合成实验中使用PMDN和MDN的混杂因素和更大的独立性表现出了更大的独立性,并且在合成实验中和多标签的多站点的磁共振图像数据集(MRIS)。
translated by 谷歌翻译
帕金森氏病(PD)是一种神经系统疾病,具有各种可观察到的与运动相关的症状,例如运动缓慢,震颤,肌肉僵硬和姿势受损。 PD通常通过评估运动障碍系统(例如运动障碍协会统一帕金森氏病评级量表(MDS-UPDRS))的评分系统来诊断PD。使用个体视频记录的自动严重性预测为无侵入性监测运动障碍提供了有希望的途径。但是,PD步态数据的大小有限阻碍模型能力和临床潜力。由于这种临床数据的稀缺性,并受到自我监督的大规模语言模型(例如GPT-3)的最新进展的启发,我们将人类运动预测用作有效的自我监督预训练的任务来估计运动障碍的严重性。我们介绍步态预测和损伤估计变压器,该变压器首先在公共数据集中进行预测以预测步态运动,然后应用于临床数据以预测MDS-UPDRS步态障碍的严重性。我们的方法的表现优于以前的方法,这些方法仅依赖于临床数据,从而达到了0.76的F1得分,精度为0.79,召回率为0.75。使用GaitForemer,我们展示了公共人类运动数据存储库如何通过学习通用运动表示来帮助临床用例。该代码可从https://github.com/markendo/gaitforemer获得。
translated by 谷歌翻译
随着在敏感应用中广泛使用复杂的机器学习模型,了解他们的决策已成为一项重要任务。对表格数据进行培训的模型在解释其基本决策过程的解释方面取得了重大进展,该过程具有少量的离散功能。但是,将这些方法应用于高维输入(例如图像)并不是一项琐碎的任务。图像由原子水平的像素组成,并不具有任何解释性。在这项工作中,我们试图使用带注释的图像的高级可解释特征来提供解释。我们利用游戏理论的Shapley价值框架,该框架在XAI问题中广泛接受。通过开发一条管道来生成反事实并随后使用它来估计莎普利值,我们获得了具有强大的公理保证的对比度和可解释的解释。
translated by 谷歌翻译
尽管它们的准确性很高,但由于未知的决策过程和潜在的偏见,现代复杂的图像分类器不能被敏感任务受到信任。反事实解释非常有效地为这些黑盒算法提供透明度。然而,生成可能对分类器输出产生一致影响并揭示可解释的特征更改的反事实是一项非常具有挑战性的任务。我们介绍了一种新颖的方法,可以使用验证的生成模型为图像分类器生成因果关系但可解释的反事实解释,而无需进行任何重新训练或调节。该技术中的生成模型不可能在与目标分类器相同的数据上进行训练。我们使用此框架来获得对比度和因果关系,并作为黑盒分类器的全球解释。在面部属性分类的任务上,我们通过提供因果和对比特征属性以及相应的反事实图像来展示不同属性如何影响分类器输出。
translated by 谷歌翻译
数码相机的加速使用引起了人们对隐私和安全性的日益关注,尤其是在诸如行动识别之类的应用程序中。在本文中,我们提出了一个优化框架,以沿着人类行动识别管道提供强大的视觉隐私保护。我们的框架参数化了相机镜头,以成功地降低视频的质量,以抑制隐私属性并防止对抗性攻击,同时保持相关功能以进行活动识别。我们通过广泛的模拟和硬件实验来验证我们的方法。
translated by 谷歌翻译
缺失数据的归责是在许多工程和科学应用中发挥着重要作用的任务。通常,这种缺失的数据来自传感器的限制或后处理转换误差的实验观察中。其他时间从计算机模拟中的数值和算法约束产生。本文的一个这样的实例和应用重点是风暴浪涌的数值模拟。模拟数据对应于感兴趣的地理领域内的多个保存点的时间序列浪涌预测,创建了浪涌点在空间且时间上大量相关的时空呈现问题,并且缺失的值区域在结构上分布随机的。最近,已经开发了机器学习技术,例如神经网络方法,并用于缺少数据归档任务。生成的对抗网(GAN)和基于GAN的技术是特别引起了无监督机器学习方法的关注。在这项研究中,通过应用卷积神经网络而不是完全连接的层来改善生成的对抗性归纳网(增益)性能,以更好地捕获数据的相关性并从相邻的浪涌点促进学习。对所研究的数据所需的方法的另一调整是考虑点作为附加特征的点的坐标,以通过卷积层提供更多信息。我们将所提出的方法称为卷积生成的对抗性普通网(CONV-GAIL)。通过考虑风暴浪涌数据所需的改进和适应来评估和与原始增益和其他一些技术进行评估,提出的方法的表现。结果表明,CONV增益比研究数据上的替代方法具有更好的性能。
translated by 谷歌翻译
AI正在经历范式转变,随着模型的兴起(例如Bert,Dall-E,GPT-3),这些模型经过大规模的数据训练,并且可以适应广泛的下游任务。我们称这些模型基础模型来强调其至关重要但不完整的特征。该报告提供了基础模型的机会和风险的详尽说明,包括其功能(例如语言,愿景,机器人技术,推理,人类互动)和技术原则(例如,模型架构,培训程序,数据,系统,安全,安全性,评估,理论)对其应用(例如法律,医疗保健,教育)和社会影响(例如不平等,滥用,经济和环境影响,法律和道德考虑)。尽管基础模型基于标准的深度学习和转移学习,但它们的规模导致了新的新兴能力,以及它们在许多任务中的有效性都激发了同质化。同质化提供了强大的杠杆作用,但要求谨慎,因为基础模型的缺陷均由下游的所有适应模型继承。尽管即将广泛地部署基础模型,但我们目前对它们的工作方式,失败以及由于其新兴属性的影响而缺乏清晰的了解。为了解决这些问题,我们认为基础模型的许多批判性研究都需要与他们的基本社会技术性质相称。
translated by 谷歌翻译
在工业环境中找到两个图像之间的概念差异对HSE目的尤为重要,并且仍然没有可靠且符合的方法来找到主要的差异来提醒相关控制器。由于不同环境中的丰富性和多种物体,在该领域中使用监督的学习方法正面临一个主要问题。由于两个场景的照明条件发生了急剧变化,因此无法天真地减去这两个图像以找到这些差异。本文的目的是查找和本地化一个场景的两个帧的概念差异,但在两个不同的时间中,并将差异分类为添加,减少和变化。在本文中,我们通过介绍深度学习方法并使用转移学习和误差函数的结构修改以及添加和合成数据的过程来证明该应用程序的全面解决方案。提供了适当的数据集并标记了标签,并在此数据集上评估了模型结果,并解释了在实际和工业应用中使用它的可能性。
translated by 谷歌翻译