新的纳米级技术的出现对辐射环境中的可靠电子系统造成了重大挑战。少数种类的辐射等全电离剂量(TID)效应通常导致在这种纳米级电子设备上的永久性损坏,以及当前最先进的技术,以使用昂贵的辐射硬化装置。本文重点介绍了一种新颖且不同的方法:在消费者电子级现场可编程门阵列(FPGA)上使用机器学习算法来解决TID效果并在停止工作之前监控它们替换。这种情况有一个研究挑战,以期待电路板因TID效应而导致总失效。我们观察到γ辐射下FPGA板的内部测量,并使用了三种不同的异常检测机学习(ML)算法来检测伽马辐射环境中的传感器测量中的异常。统计结果表明伽马辐射曝光水平与板测量之间的高度显着关系。此外,我们的异常检测结果表明,具有径向基函数内核的单级支持向量机的平均召回得分为0.95。此外,在电路板停止工作之前,可以检测到所有异常。
translated by 谷歌翻译
研究人员通常会采用数值方法来理解和预测海洋动力学,这是掌握环境现象的关键任务。在地形图很复杂,有关基础过程的知识不完整或应用程序至关重要的情况下,此类方法可能不适合。另一方面,如果观察到海洋动力学,则可以通过最近的机器学习方法来利用它们。在本文中,我们描述了一种数据驱动的方法,可以预测环境变量,例如巴西东南海岸的Santos-Sao Vicente-Bertioga estuarine系统的当前速度和海面高度。我们的模型通过连接最新的序列模型(LSTM和Transformers)以及关系模型(图神经网络)来利用时间和空间归纳偏见,以学习时间特征和空间特征,观察站点之间共享的关系。我们将结果与桑托斯运营预测系统(SOFS)进行比较。实验表明,我们的模型可以实现更好的结果,同时保持灵活性和很少的领域知识依赖性。
translated by 谷歌翻译
我们研究了可以写入欧几里得凸函数的差异的地质凸(G-Convex)问题。这种结构出现在统计和机器学习中的几个优化问题中,例如,用于矩阵缩放,协方差的M估计器和Brascamp-Lieb不平等。我们的工作提供有效的算法,一方面利用G-Convexity来确保全球最优性以及保证迭代复杂性。另一方面,拆分结构使我们能够开发欧几里得最小化算法,这些算法可以帮助我们绕开计算昂贵的Riemannian操作(例如指数型地图和并行运输)的需求。我们通过将其专门针对机器学习文献中以前研究过的一些具体优化问题来说明我们的结果。最终,我们希望我们的工作有助于激励人们更广泛地寻找混合的欧几罗南优化算法。
translated by 谷歌翻译
目的:利用高分辨率定量CT(QCT)成像特征来预测间质肺疾病(ILD)的纤维纤维诊断和预后。方法:40名ILD患者(20例常规间质性肺炎(UIP),20个非UIP模式ILD)由2位放射科医生的专家共识分类,随后持续了7年。记录临床变量。分割肺场后,使用基于晶格的方法(TM模型)提取了总共26个纹理特征。将TM模型与先前基于直方图的模型(HM)进行了比较,以便将UIP与非UIP分类。为了进行预后评估,进行了生存分析,将专家诊断标签与TM指标进行比较。结果:在分类分析中,TM模型的表现优于HM方法,AUC为0.70。虽然在COX回归分析中,UIP与非UIP专家标签的生存曲线在统计学上并没有差异,但TM QCT特征允许该队列的统计学意义分区。结论:TM模型在区分非UIP模式方面优于HM模型。最重要的是,TM允许将队列分配为不同的生存群体,而专家UIP与非UIP标签则不得。 QCT TM模型可以改善ILD的诊断,并提供更准确的预后,更好地指导患者管理。
translated by 谷歌翻译
最近的自动驾驶汽车(AV)技术包括机器学习和概率技术,这些技术为传统验证和验证方法增添了重大复杂性。在过去的几年中,研究社区和行业已广泛接受基于方案的测试。由于它直接关注相关的关键道路情况,因此可以减少测试所需的努力。编码现实世界流量参与者的行为对于在基于方案的测试中有效评估正在测试的系统(SUT)至关重要。因此,有必要从现实世界数据中捕获方案参数,这些参数可以在模拟中实际建模。本文的主要重点是确定有意义的参数列表,这些参数可以充分建模现实世界改变场景。使用这些参数,可以构建一个参数空间,能够为AV测试有效地生成一系列具有挑战性的方案。我们使用均方根误差(RMSE)验证我们的方法,以比较使用所提出的参数与现实世界轨迹数据生成的方案。除此之外,我们还证明,在一些场景参数中增加一些干扰可以产生不同的场景,并利用对责任敏感的安全(RSS)度量来衡量场景的风险。
translated by 谷歌翻译
本文提出了一种新的方法,该方法结合了卷积层(CLS)和大规模的度量度量,用于在小数据集上进行培训模型以进行纹理分类。这种方法的核心是损失函数,该函数计算了感兴趣的实例和支持向量之间的距离。目的是在迭代中更新CLS的权重,以学习一类之间具有较大利润的表示形式。每次迭代都会产生一个基于这种表示形式的支持向量表示的大细边缘判别模型。拟议方法的优势W.R.T.卷积神经网络(CNN)为两倍。首先,由于参数数量减少,与等效的CNN相比,它允许用少量数据进行表示。其次,自返回传播仅考虑支持向量以来,它的培训成本较低。关于纹理和组织病理学图像数据集的实验结果表明,与等效的CNN相比,所提出的方法以较低的计算成本和更快的收敛性达到了竞争精度。
translated by 谷歌翻译
我们建议在散射转换网络(STN)中使用广义的摩尔斯小波(GMW),而不是常用的莫雷特(或Gabor)小波,我们称之为GMW-STN,用于信号分类问题。GMWS形成了真正分析波的参数化家族,而Morlet小波仅近似分析。STN中潜在小波过滤器的分析性对于非组织振荡信号(例如音乐信号)尤为重要,因为它通过提供多尺度振幅和相位(以及导致输入信号的频率)信息来提高STN表示的可解释性。我们使用所谓的GTZAN数据库证明了GMW-STN比传统STN的优越性。此外,我们通过将其层数增加到典型的两层STN的三层,以显示GMW-STN的性能提高。}
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
仇恨言论与用户生成的内容一起困扰网络空间。本文调查了对话环境在在线仇恨和反语音的注释和检测中的作用,其中将上下文定义为对话线程中的前面评论。我们创建了一个上下文感知的数据集,用于在Reddit评论上进行三向分类任务:仇恨言语,反语音或中立。我们的分析表明,上下文对于识别仇恨和反语音至关重要:大多数评论的人类判断都会根据我们是否向注释者展示上下文而改变。语言分析吸引了人们用来表达仇恨和反语言的语言的见解。实验结果表明,如果考虑到上下文,神经网络将获得明显更好的结果。我们还提出了定性错误分析,将灯光放到(a)何时以及为什么有益的情况下以及(b)考虑到上下文时我们最佳模型造成的其余错误。
translated by 谷歌翻译
有效的决策涉及将过去的经验和相关上下文信息与新型情况联系起来。在深入的强化学习中,主导范式是代理商摊销信息,通过训练损失的梯度下降来帮助决策进入其网络权重。在这里,我们采用了一种替代方法,其中代理可以利用大规模上下文敏感的数据库查找来支持其参数计算。这使代理商可以直接以端到端的方式学习,以利用相关信息来告知其输出。此外,代理可以通过简单地扩大检索数据集来了解新信息,而无需再进行重新培训。我们在GO中研究这种方法,这是一款具有挑战性的游戏,庞大的组合状态空间特权对与过去的体验进行了直接匹配。我们利用快速,大约最近的邻居技术来从数千万的专家示范状态中检索相关数据。参与此信息为简单地将这些示范作为训练轨迹而言,可以显着提高预测准确性和游戏性能,从而使大规模检索在加强学习剂中的价值提供了令人信服的演示。
translated by 谷歌翻译