蛋白质 - 蛋白质相互作用(PPI)对正常细胞功能至关重要,并且与许多疾病途径有关。然而,只有4%的PPI用PTMS在诸如完整的生物知识数据库中的PTM,主要通过手动策策进行,这既不是时间也不是成本效益。我们使用完整的PPI数据库创建具有交互蛋白对,它们相应的PTM类型和来自PubMed数据库的相关摘要注释的远程监督数据集。我们训练Biobert Models的一组合 - 配音PPI-Biobert-X10,以提高置信度校准。我们利用集合平均置信度方法的使用,置信范围抵消了类别不平衡提取高信任预测的影响。在测试集上评估的PPI-BIOBERT-X10模型导致适用的F1-MICRO 41.3(P = 5 8.1,R = 32.1)。然而,通过结合高信心和低变化来识别高质量的预测,调整精度预测,我们保留了100%精度的19%的测试预测。我们评估了1800万PubMed摘要的PPI-Biobert-X10,提取了160万(546507个独特的PTM-PPI三联网)PTM-PPI预测,并过滤〜5700(4584个独一无二)的高信心预测。在5700中,对于小型随机采样的子集进行人体评估表明,尽管置信度校准,精度降至33.7%,并突出了即使在置信度校准的情况下超出了测试集中的最长途的挑战。我们仅包括与多个论文相关的预测的问题来规避问题,从而将精确提高到58.8%。在这项工作中,我们突出了深入学习的文本挖掘在实践中的利益和挑战,并且需要增加对置信校准的强调,以促进人类策划努力。
translated by 谷歌翻译
在专着“强大的人工智能。关于超级智能的方法”中包含通用人工智能(AGI)的概述。作为拟人化研究领域,它包括大脑原理编程(BPP) - 大脑的普遍机制(原理)的形式化,并在神经组织组织的各个层面上实施。该专着在类别理论方面包含了这些原则的形式化。但是,这种形式化不足以开发用于使用信息的算法。在本文中,对于BPP的描述和建模,建议采用较早开发的数学模型和算法,该模型和算法对认知功能进行了建模,并基于众所周知的生理,心理和其他自然科学理论。本文使用以下理论的数学模型和算法:P.K.Anokhin功能性脑系统理论,Eleanor Rosch原型分类理论,Bob Rehder因果模型和“自然”分类。结果,获得了BPP的形式化,并提供了证明算法运行的计算机实验。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
在基于模型的医学图像分析中,感兴趣的三个特征是感兴趣的结构,其相对姿势和代表一些物理性质的图像强度谱的形状。通常,这些通过统计模型分别通过统计模型来通过主要测地分析或主成分分析将对象的特征分解成一组基函数。本研究提出了一种统计建模方法,用于在医学图像中自动学习形状,姿势和强度特征,我们称之为动态多特征类高斯过程模型(DMFC-GPM)。 DMFC-GPM是基于高斯过程(GP)的模型,具有编码线性和非线性变化的共享潜在空间。我们的方法在连续域中定义,其具有基于变形字段的线性空间中的形状,姿势和强度特征类。在用于建模形状和强度特征变化的方法以及比较刚性变换(姿势)的方法中,适于变形现场度量。此外,DMFC-GPMS继承了GPS内在的属性,包括边缘化和回归。此外,它们允许在从图像采集过程获得的那些之上增加额外的姿势特征可变性;我们是什么术语作为排列建模。对于使用DMFC-GPMS的图像分析任务,我们适应了Metropolis-Hastings算法,使得具有完全概率的特征预测。我们验证了使用受控合成数据的方法,并且我们在肩部的CT图像上对骨结构进行实验,以说明模型姿势和形状特征预测的功效。模型性能结果表明,这种新的造型范例是强大,准确,可访问的,并且具有潜在的应用,包括肌肉骨骼障碍和临床决策
translated by 谷歌翻译
联合学习是一种新颖的框架,允许多个设备或机构在保留其私有数据时协同地培训机器学习模型。这种分散的方法易于遭受数据统计异质性的后果,无论是在不同的实体还是随着时间的推移,这可能导致缺乏会聚。为避免此类问题,在过去几年中提出了不同的方法。然而,数据可能在许多不同的方式中是异构的,并且当前的建议并不总是确定他们正在考虑的异质性的那种。在这项工作中,我们正式地分类数据统计异质性,并审查能够面对它的最显着的学习策略。与此同时,我们介绍了其他机器学习框架的方法,例如持续学习,也处理数据异质性,并且可以很容易地适应联邦学习设置。
translated by 谷歌翻译
我们提出了一个框架,允许移动机器人建立室内场景的地图,识别和突出显示可能被认为是流动性有限的人的障碍的物体。该地图是通过与机器人平台的惯性传感器的信息组合单眼SLAM的最新发展来构建地图,导致可以进一步处理的度量点云以获得网格。通过对象识别神经网络同时分析来自单眼摄像机的图像,调谐以检测特定类别的目标。然后将该信息处理并结合在公制地图上,导致对感兴趣对象的位置和边界卷的详细调查。结果可用于通知政策制定者和用户在特定室内位置中存在的危险有限的流动性。我们的初始测试是使用微观UAV进行的,并将扩展到其他机器人平台。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
神经记录的进展现在在前所未有的细节中研究神经活动的机会。潜在的变量模型(LVMS)是用于分析各种神经系统和行为的丰富活动的有希望的工具,因为LVM不依赖于活动与外部实验变量之间的已知关系。然而,目前缺乏标准化目前阻碍了对神经元群体活性的LVM进行的进展,导致采用临时方式进行和比较方法。为协调这些建模工作,我们为神经人群活动的潜在变量建模介绍了基准套件。我们从认知,感官和机动领域策划了四种神经尖峰活动的数据集,以促进适用于这些地区各地的各种活动的模型。我们将无监督的评估视为用于评估数据集的模型的共同框架,并应用几个显示基准多样性的基线。我们通过评估释放此基准。 http://neurallatents.github.io.
translated by 谷歌翻译
尽管数据增强和转移学习有所进步,但卷积神经网络(CNNS)难以推广到看不见的域。在分割大脑扫描时,CNN对分辨率和对比度的变化非常敏感:即使在相同的MRI模式内,则性能可能会跨数据集减少。在这里,我们介绍了Synthseg,第一个分段CNN无关紧要对比和分辨率。 Synthseg培训,用从分段上的生成模型采样的合成数据培训。至关重要,我们采用域随机化策略,我们完全随机开启了合成培训数据的对比度和解决。因此,Synthseg可以在没有再培训或微调的情况下对任何目标结构域进行真实扫描,这是首次分析大量的异构临床数据。因为Synthseg仅需要进行培训(无图像),所以它可以从通过不同群体的对象(例如,老化和患病)的自动化方法获得的标签中学习,从而实现广泛的形态变异性的鲁棒性。我们展示了Synthseg在六种方式的5,300扫描和十项决议中,与监督CNN,最先进的域适应和贝叶斯分割相比,它表现出无与伦比的泛化。最后,我们通过将其施加到心脏MRI和CT分割来证明SyntheeG的恒定性。
translated by 谷歌翻译