Photo-realistic style transfer aims at migrating the artistic style from an exemplar style image to a content image, producing a result image without spatial distortions or unrealistic artifacts. Impressive results have been achieved by recent deep models. However, deep neural network based methods are too expensive to run in real-time. Meanwhile, bilateral grid based methods are much faster but still contain artifacts like overexposure. In this work, we propose the \textbf{Adaptive ColorMLP (AdaCM)}, an effective and efficient framework for universal photo-realistic style transfer. First, we find the complex non-linear color mapping between input and target domain can be efficiently modeled by a small multi-layer perceptron (ColorMLP) model. Then, in \textbf{AdaCM}, we adopt a CNN encoder to adaptively predict all parameters for the ColorMLP conditioned on each input content and style image pair. Experimental results demonstrate that AdaCM can generate vivid and high-quality stylization results. Meanwhile, our AdaCM is ultrafast and can process a 4K resolution image in 6ms on one V100 GPU.
translated by 谷歌翻译
Reference-based image super-resolution (RefSR) is a promising SR branch and has shown great potential in overcoming the limitations of single image super-resolution. While previous state-of-the-art RefSR methods mainly focus on improving the efficacy and robustness of reference feature transfer, it is generally overlooked that a well reconstructed SR image should enable better SR reconstruction for its similar LR images when it is referred to as. Therefore, in this work, we propose a reciprocal learning framework that can appropriately leverage such a fact to reinforce the learning of a RefSR network. Besides, we deliberately design a progressive feature alignment and selection module for further improving the RefSR task. The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection in a progressive manner, thus more precise reference features can be transferred into the input features and the network capability is enhanced. Our reciprocal learning paradigm is model-agnostic and it can be applied to arbitrary RefSR models. We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm. Furthermore, our proposed model together with the reciprocal learning strategy sets new state-of-the-art performances on multiple benchmarks.
translated by 谷歌翻译
使用具有固定尺度的图像超分辨率(SR)的深度学习技术,已经取得了巨大的成功。为了提高其现实世界的适用性,还提出了许多模型来恢复具有任意尺度因子的SR图像,包括不对称的图像,其中图像沿水平和垂直方向大小为不同的尺度。尽管大多数模型仅针对单向上升尺度任务进行了优化,同时假设针对低分辨率(LR)输入的预定义的缩小内核,但基于可逆神经网络(INN)的最新模型能够通过优化降低和降低尺度和降低范围的降低准确性来显着提高上升的准确性共同。但是,受创新体系结构的限制,它被限制在固定的整数尺度因素上,并且需要每个量表的一个模型。在不增加模型复杂性的情况下,提出了一个简单有效的可逆重新恢复网络(IARN),以通过在这项工作中仅训练一个模型来实现任意图像重新缩放。使用创新的组件,例如位置感知量表编码和先发制通道拆分,该网络被优化,以将不可固化的重新恢复周期转换为有效的可逆过程。证明它可以在双向任意重新缩放中实现最新的(SOTA)性能,而不会在LR输出中损害感知质量。还可以证明,使用相同的网络体系结构在不对称尺度的测试上表现良好。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
图像文本检索(ITR)在桥接视觉和舌形式方面具有挑战性。对比度学习已被大多数先前的艺术所采用。除了有限的负面图像文本对外,约束学习的能力受到手动加权负对以及对外部知识的不认识的限制。在本文中,我们提出了新型耦合多样性敏感的动量约束学习(编码器),以改善跨模式表示。首先,发明了一种新颖的多样性对比度学习(DCL)体系结构。我们引入了两种模式的动态词典,以扩大图像文本对的比例,并且通过自适应负面对加权实现多样性敏感性。此外,编码器设计了两个分支。一个人从图像/文本中学习实例级的嵌入式,它还基于其嵌入为其输入图像/文本生成伪在线聚类标签。同时,另一个分支学会从常识知识图中查询以形成两种模式的概念级描述符。之后,两个分支都利用DCL来对齐跨模式嵌入空间,而额外的伪聚类标签预测损失则用于促进第二个分支的概念级表示学习。在两个流行的基准测试(即Mscoco和Flicker30k)上进行的广泛实验,验证编码器的表现明显优于最先进的方法。
translated by 谷歌翻译
Video-Text检索(VTR)是多模式理解的一项有吸引力但具有挑战性的任务,该任务旨在在给定查询(视频)的情况下搜索相关的视频(文本)。现有方法通常采用完全异构的视觉文本信息来对齐视频和文本,同时缺乏对这两种模式中均匀的高级语义信息的认识。为了填补这一差距,在这项工作中,我们提出了一个新颖的视觉语言对准模型,名为VTR Hise,该模型通过合并显式高级语义来改善跨模式的表示。首先,我们探讨了显式高级语义的层次结构属性,并将其进一步分为两个级别,即离散的语义和整体语义。具体来说,对于视觉分支,我们利用了现成的语义实体预测器来生成离散的高级语义。同时,采用训练有素的视频字幕模型来输出整体高级语义。至于文本方式,我们将文本分为三个部分,包括发生,动作和实体。特别是,这种情况对应于整体高级语义,同时动作和实体代表离散的语义。然后,利用不同的图推理技术来促进整体和离散的高级语义之间的相互作用。广泛的实验表明,借助明确的高级语义,我们的方法在包括MSR-VTT,MSVD和DIDEMO在内的三个基准数据集上实现了优于最先进方法的卓越性能。
translated by 谷歌翻译
对于人工智能系统来说,在低计算成本的情况下实现准确的视频识别是一项挑战。基于自适应推理的有效视频识别方法通常会预览视频,并专注于显着零件以降低计算成本。大多数现有作品都集中在复杂的网络学习,并具有基于视频分类的目标。以所有框架为正样本,其中很少有人关注积极样本(显着框架)和负面样本(非空位框架)之间的歧视。为了填补这一空白,在本文中,我们提出了一个新型的非高度抑制网络(NSNET),该网络有效地抑制了非征力框架的响应。具体而言,在框架级别上,可以生成可以区分显着框架和非空位框架的有效伪标签,以指导框架显着性学习。在视频层面上,在双重视频级别的监督下都学会了一个时间关注模块,这些模块既是对突出表示和非偏心表示形式。从两个两个级别的显着度测量都合并以利用多粒性互补信息。在四个众所周知的基准上进行的广泛实验验证了我们的NSNET不仅实现了最先进的准确性效率折衷,而且比最先进的推理速度要快得多(2.4〜4.3倍) - 艺术方法。我们的项目页面位于https://lawrencexia2008.github.io/projects/nsnet。
translated by 谷歌翻译
我们通过对修饰过程进行建模,以执行一系列新引入的可训练的神经色运算符来提出一种新型的图像修饰方法。神经颜色操作员模仿了传统颜色运算符的行为,并学习了Pixelwise Color Transformation,而其强度则由标量控制。为了反映颜色运算符的同构属性,我们采用了模棱两可的映射,并采用编码器编码器结构,该结构将非线性颜色转换映射到更简单的转换(即翻译),在高维空间中。通过分析全球图像统计数据,使用基于CNN的强度预测指标预测每个神经颜色操作员的标量强度。总体而言,我们的方法相当轻巧,并提供灵活的控件。实验和公共数据集的用户研究表明,与SOTA方法相比,我们的方法始终取得了最佳的结果。代码和数据将公开可用。
translated by 谷歌翻译
深度学习的表现以检索方式实现了出色的图像检索性能。启发式融合本地和全球特征的最新最先进的单阶段模型可以在效率和有效性之间取决于有希望的权衡。但是,我们注意到由于其多尺度推理范式,现有解决方案的效率仍受到限制。在本文中,我们遵循单阶段的艺术,并通过成功摆脱多尺度测试来获得进一步的复杂性效应平衡。为了实现这一目标,我们放弃了广泛使用的卷积网络,从而限制了探索各种视觉模式的局限性,并诉诸完全基于注意力的框架,以通过变形金刚的成功动机,以实现强大的表示学习。除了将变压器应用于全局特征提取外,我们还设计了一个本地分支,该分支由基于窗口的多头注意力和空间注意力组成,以完全利用本地图像模式。此外,我们建议通过交叉意见模块组合分层本地和全球特征,而不是像以前的艺术一样使用启发式融合。借助我们深入的本地和全球建模框架(DALG),广泛的实验结果表明,效率可以显着提高,同时保持艺术状态的竞争成果。
translated by 谷歌翻译
强大的语义细分面临的一个普遍挑战是昂贵的数据注释成本。现有的半监督解决方案显示出解决此问题的巨大潜力。他们的关键想法是通过未经监督的数据增加未标记的数据来构建一致性正则化,以进行模型培训。未标记数据的扰动使一致性训练损失使半监督的语义分割受益。但是,这些扰动破坏了图像上下文并引入了不自然的边界,这对语义分割是有害的。此外,广泛采用的半监督学习框架,即均值老师,遭受了绩效限制,因为学生模型最终会收敛于教师模型。在本文中,首先,我们提出了一个友好的可区分几何扭曲,以进行无监督的数据增强。其次,提出了一个新颖的对抗双重学生框架,以从以下两个方面从以下两个方面改善均等老师:(1)双重学生模型是独立学习的,除了稳定约束以鼓励利用模型多样性; (2)对对抗性训练计划适用于学生,并诉诸歧视者以区分无标记数据的可靠伪标签进行自我训练。通过对Pascal VOC2012和CityScapes进行的广泛实验来验证有效性。我们的解决方案可显着提高两个数据集的性能和最先进的结果。值得注意的是,与完全监督相比,我们的解决方案仅使用Pascal VOC2012上的12.5%注释数据获得了73.4%的可比MIOU。我们的代码和模型可在https://github.com/caocong/ads-semiseg上找到。
translated by 谷歌翻译