本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
在图像登记中,许多努力已经致力于开发流行的标准化互信息标准的替代方案。同时对这些努力,越来越多的作品已经证明了登记准确性的大量收益也可以通过对准图像的结构表示而不是图像本身来实现的。在这条研究路径之后,我们提出了一种基于从诸如梯度矢量流场的结构信息的正则化矢量字段的对准来提出一种新方法,如梯度向量流字段,我们调用\ Texit {Vector Field Mettionity}。我们的方法可以通过将矢量字段相似与基于强度的注册的替换方法相似,以直接的方式与任何现有的登记框架组合。在我们的实验中,我们表明所提出的方法在几个公共图像数据集上使用多样性的成像方式和解剖位置对几个公共图像数据集进行了比较。
translated by 谷歌翻译
混合是一种数据增强方法,通过混合一对输入数据来生成新数据点。虽然混合通常会改善预测性能,但它有时会降低性能。在本文中,我们首先通过理论上和经验分析混合算法来确定这种现象的主要原因。要解决此问题,我们提出了一种简单但有效的重定标记算法,专为混合而提出了Genlabel。特别是,GenLabel通过使用生成模型学习类条件数据分布,帮助混合算法正确标记混合样本。通过广泛的理论和实证分析,我们表明混合,当与Genlabel一起使用时,可以有效地解决上述现象,从而提高泛化性能和对抗鲁棒性。
translated by 谷歌翻译
最近的工作表明,在Covid-19筛选中使用音频数据的可能性。然而,对监测疾病进展进行了很少的探索,特别是通过音频在Covid-19中恢复。跟踪疾病进展特征和复苏模式可能导致巨大的见解和更及时的治疗或治疗调整,以及在医疗保健系统中更好的资源管理。本研究的主要目的是利用顺序深度学习技术探讨Covid-19监测的纵向音频动力学的潜力,专注于疾病进展预测,特别是恢复趋势预测。我们分析了5天至385天的212个个体中众包呼吸系统数据,以及其自我报告的Covid-19测试结果。我们首先探讨捕获音频生物标志物的纵向动态的好处,用于Covid-19检测。强化性能,产生0.79的AUC-ROC,灵敏度为0.75,特异性为0.70,与不利用纵向动态的方法相比,该方法的有效性。我们进一步检查了预测的疾病进展轨迹,其显示出高一致性与纵向试验结果,测试队列中的0.76中的相关性,测试队列的子集中为0.86,其中12名参与者报告疾病恢复。我们的研究结果表明,通过纵向音频数据监测Covid-19进展在追踪个人疾病进展和恢复方面具有巨大潜力。
translated by 谷歌翻译
本地化对于自主移动机器人来说是一个重要的任务,以便成功转向其环境中的目标位置。通常,这是以机器人为中心的方式完成的,其中机器人在中心中将地图维持。在群体机器人应用程序中,其中一组机器人需要协调,以实现其共同的目标,机器人为中心的本地化与群体的每个成员都没有其自己的参考框架。处理此问题的一种方法是创建,维护和共享群体成员中的通用地图(全局坐标系)。本文提出了一种在未知,GPS和地标的环境中的一组机器人的全球本地化方法,该机器人扩展了瓢虫算法的定位方案。主要想法依赖于群体的成员仍然仍然并充当信标,发射电磁信号。这些静止机器人形成了全局参考框架,并且本组的其余部分使用所接收的信号强度指示器(RSSI)本身整理它。评估所提出的方法,并且从实验中获得的结果是有前途的。
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
尽管在自然语言处理(NLP)中经常发生的经常性神经网络(RNN),但由于RNN中的本质上复杂计算,RNN的理论理解仍然有限。我们在普遍存在的NLP任务中对RNNS的行为进行了系统分析,通过映射到一种称为经常性算术电路(RAC)和矩阵产品状态(MPS)之间的映射来对电影评论的情感分析。使用von-neumann纠缠熵(EE)作为信息传播的代理,我们表明单层RACS具有最大信息传播能力,由EE的饱和反映。放大超出EE饱和阈值的MP的键尺寸不会增加预测精度,因此可以构建最佳估计数据统计数据的最小模型。虽然饱和EE小于MPS的面积法可实现的最大EE,但我们的模型在现实情绪分析数据集中实现了〜99%的训练准确性。因此,单独的低EE不是针对NLP采用单层RAC的权证。与常见的信念相反,远程信息传播是RNNS表达的主要来源,我们表明单层RACS也从有意义的单词矢量嵌入中利用高表现力。我们的工作揭示了在RAC的现象学中,更一般地用于NLP的RNNS的解释性方面,使用来自许多身体量子物理学的工具。
translated by 谷歌翻译
图像中的对象状态的检测(状态检测 - SD)是理论和实际重要性的问题,并且它与其他重要的计算机视觉问题紧密地交织,例如动作识别和承受性检测。它对任何需要有理由和在动态域名的实体的实体也非常相关,例如机器人系统和智能代理人。尽管重要的是,到目前为止,这一问题的研究已经有限。在本文中,我们尝试了对SD问题的系统研究。首先,我们介绍了对象状态检测数据集(OSDD),这是一个由19,000个注释为18个对象类别和9个州类的注释组成的新公共可用数据集。其次,使用用于对象检测(OD)的标准深度学习框架,我们进行多项适当设计的实验,深入研究SD问题的行为。本研究能够在各种场景中实现SD的性能的基准,以及与OD相比的相对性能。总的来说,实验结果证实,SD比OD更难,需要制定定制的SD方法来有效地解决这一重大问题。
translated by 谷歌翻译