我们提出了一种神经混合模型,该模型由在由深度可逆变换(即,正常化流动)计算的特征的一组上定义的线性模型组成。我们模型的一个吸引人的特性是,p(特征),特征密度和p(目标|特征),预测分布,可以在单个前馈传递中精确计算。我们表明,尽管存在可逆性约束,我们的混合模型可以实现与纯预测模型的相似性。然而,尽管存在混合优化目标,生成组件仍然是输入特征的良好模型。这提供了额外的功能,例如检测分发外输入和启用半监督学习。精确关联密度p(目标,特征)的可用性也使我们可以很好地计算许多量,使我们的混合模型成为概率深度学习的下行应用的有用构建块。
translated by 谷歌翻译