自主驾驶的典型轨迹计划通常依赖于预测周围障碍的未来行为。近年来,由于其令人印象深刻的性能,基于深度学习的预测模型已被广泛使用。但是,最近的研究表明,在长尾驾驶场景分布之后,在数据集上训练的深度学习模型将遭受“尾巴”的大量预测错误,这可能会导致计划者的失败。为此,这项工作定义了预测模型不确定性的概念,以量化由于数据稀疏而导致的高错误。此外,这项工作提出了一个轨迹规划师,以考虑对更安全性能的这种预测不确定性。首先,由于培训数据不足而导致的预测模型的不确定性是由集成网络结构估算的。然后,轨迹规划师的设计目的是考虑预测不确定性引起的最坏情况。结果表明,在数据不足引起的预测不确定性下,提出的方法可以提高轨迹计划的安全性。同时,使用足够的数据,该框架不会导致过度保守的结果。这项技术有助于在现实世界的长尾数据分布下提高自动驾驶汽车的安全性和可靠性。
translated by 谷歌翻译