在本文中,我们展示了一种独特的配方,可以通过将预处理技术融合到深度学习模型中来增强音频机学习方法的有效性。我们的解决方案通过通过训练而不是昂贵的随机搜索来优化超参数来加速培训和推理性能,从而从音频信号中构建可靠的蚊子探测器。此处介绍的实验和结果是MOS C提交ACM 2022挑战的一部分。在未发表的测试集上,我们的结果优于已发布的基线212%。我们认为,这是建立强大的生物声学系统的最好的现实世界中的一个例子之一,该系统在嘈杂的条件下提供可靠的蚊子检测。
translated by 谷歌翻译
从机器学习模型中删除指定的培训数据子集的影响可能需要解决隐私,公平和数据质量等问题。删除子集后剩余数据从头开始对模型进行重新审查是有效但通常是不可行的,因为其计算费用。因此,在过去的几年中,已经看到了几种有效拆除的新方法,形成了“机器学习”领域,但是,到目前为止,出版的文献的许多方面都是不同的,缺乏共识。在本文中,我们总结并比较了七个最先进的机器学习算法,合并对现场中使用的核心概念的定义,调和不同的方法来评估算法,并讨论与在实践中应用机器相关的问题。
translated by 谷歌翻译
场景图生成的任务需要在给定图像(或视频)中识别对象实体及其相应的交互谓词。由于组合较大的解决方案空间,现有的场景图生成方法假设关节分布的某些分解以使估计可行(例如,假设对象在有条件地与谓词预测无关)。但是,在所有情况下,这种固定的分解并不是理想的(例如,对于相互作用中需要的对象很小且本身不可辨别的图像)。在这项工作中,我们建议使用马尔可夫随机字段中传递消息,提出一个针对场景图生成的新颖框架,并在图像上引入动态调节。这是作为迭代改进过程实现的,其中每个修改都在上一个迭代中生成的图上进行条件。跨改进步骤的这种条件允许对实体和关系进行联合推理。该框架是通过基于小说和端到端的可训练变压器建筑实现的。此外,建议的框架可以改善现有的方法性能。通过有关视觉基因组和动作基因组基准数据集的广泛实验,我们在场景图生成上显示了改善的性能。
translated by 谷歌翻译
深度学习模型推断是许多企业和科学发现过程中的关键服务。本文介绍了Ribbon,这是一种新颖的深度学习推理服务系统,符合两个相互竞争的目标:服务质量(QoS)目标和成本效益。功能区背后的关键思想是智能采用各种云计算实例(异质实例)来满足QoS目标并最大程度地节省成本。功能区设计了一种贝叶斯优化驱动的策略,该策略可帮助用户在云计算平台上为其模型推理服务需求构建最佳的异质实例集 - 并且,功能区展示了其优于使用均匀实例池的推理服务系统的优越性。功能区可为不同的学习模型节省多达16%的推理服务成本,包括新兴的深度学习建议系统模型和药物发现的启用模型。
translated by 谷歌翻译
具有深层神经网络的图像分类使技术突破激增,在面部识别,医学成像和自动驾驶等领域具有有希望的应用。然而,在工程问题中,例如发动机喷油器喷雾剂或身体油漆喷雾剂的高速成像,深度神经网络面临着与充足和多样性数据的可用性有关的根本挑战。通常,只有数千甚至数百个样本可供培训。此外,不同喷雾类之间的过渡是连续体,需要高水平的域专业知识来准确标记图像。在这项工作中,我们使用混音作为一种系统地处理工业喷雾应用中发现的数据稀缺和模棱两可的类界限的方法。我们表明,数据增强可以减轻小型数据集上大型神经网络的过度问题,但无法从根本上解决该问题。我们讨论了不同类别的凸线性插值如何自然与应用程序中不同类别之间的连续过渡保持一致。我们的实验表明,混合是一种简单而有效的方法,可以用仅几百个样品训练准确,坚固的深神网络分类器。
translated by 谷歌翻译
管理折扣促销活动(“ Markdown”)是经营电子商务业务的重要组成部分,这里的效率低下可能会严重阻碍零售商的盈利能力。解决此问题的传统方法在很大程度上取决于价格弹性建模。但是,价格弹性建模的部分信息性质,以及保护盈利能力的不可谈判的责任,意味着机器学习从业人员经常必须经过巨大的时间来定义衡量离线模型质量的策略。面对这一点,许多零售商依靠基于规则的方法,因此可以通过机器学习来捕获的盈利能力获得可观的收益。在本文中,我们介绍了两个新颖的端到端降价管理系统,以优化零售商旅程的不同阶段的赌注。第一个系统“ ITHAX”制定了无需估算的理性供应方定价策略,并且可以用作“冷启动”解决方案,以收集降价数据,同时保持收入控制。第二个系统“ Prosotheus”为价格弹性提供了一个完整的降价优化的框架。我们详细描述了特定的建模和验证程序,在我们的经验中,这对于建立在现实世界中稳健性能的系统至关重要。与我们经验丰富的运营团队在受控的在线测试中做出的决策相比,这两种降级系统都具有卓越的盈利能力,相对于手动策略,改善了86%(Promotheus)和79%(ITHAX)。这些系统已被部署以在ASOS.com上管理Markdown,并且可以在各种零售电子商务环境中进行价格优化的价格优化。
translated by 谷歌翻译
考虑了使用间歇性冲动力在三维空间中对棍子进行非骚扰操作的问题。目的是在一系列旋转对称的垂直轴对称的配置序列之间兼顾棍子。棍棒的动力学由五个广义坐标和三个控制输入描述。在应用冲动输入的两种连续配置之间,动力学在杂耍者的参考框架中以Poincar \'E映射为方便地表示。通过稳定庞加尔\'e地图上的固定点来实现与所需杂耍运动相关的轨道的稳定化。脉冲控制的Poincar \'e MAP方法用于稳定轨道,数值模拟用于证明与任意初始配置中所需的杂耍运动的收敛。在限制情况下,如果连续旋转对称配置被任意接近,则表明动力学将减少到箍上杆上稳定进动的动力学。
translated by 谷歌翻译
全球2019百万人被感染,450万失去了持续的Covid-19大流行病。直到疫苗变得广泛的可用,预防措施和安全措施,如戴着面具,身体疏远,避免面对面触摸是一些抑制病毒传播的主要手段。脸部触摸是一种强迫性的人Begvior,在不进行持续派生的情况下,不能防止,即使那么它是不可避免的。为了解决这个问题,我们设计了一种基于SmartWatch的解决方案,Covidalert,利用了随机森林算法,从SmartWatch训练了加速度计和陀螺数据,以检测到面部的手动转换,并向用户发送快速触觉警报。 Covidalert是高能量的,因为它使用STA / LTA算法作为网守,在用户处于非活动状态时缩短手表上随机林模型的使用。我们的系统的整体准确性为88.4%,具有低假阴性和误报。我们还通过在商业化石Gen 5 Smartwatch上实现了系统的活力。
translated by 谷歌翻译
我们介绍了基于学习的合规控制器,用于工业机器人的装配操作。我们提出了在从演示(LFD)中的一般环境中的一个解决方案,其中通过专家教师演示提供标称轨迹。这可以用于学习可以概括为组装中涉及的一个部件的新颖的技术的合适的表达,例如钉孔中的孔(PEG)插入任务。在期望中,在视觉或其他感测系统不完全准确地估计这种新颖的位置,机器人需要进一步修改产生的轨迹,以响应通过力 - 扭矩(F / T)传感器测量的力读数安装在机器人的手腕或另一个合适的位置。在组装期间遍历参考轨迹的恒定速度的假设,我们提出了一种新颖的容纳力控制器,其允许机器人安全地探索不同的接触配置。使用该控制器收集的数据用于训练高斯过程模型以预测栓地相对于目标孔的位置的未对准。我们表明所提出的基于学习的方法可以校正由PIH任务中组装部件之间的未对准引起的各种接触配置,在插入期间实现了高成功率。我们使用工业操纵器臂展示结果,并证明所提出的方法可以使用从培训的机器学习模型的力反馈来执行自适应插入。
translated by 谷歌翻译
对比语言图像预测(剪辑)编码器已被证明是有利于对分类和检测到标题和图像操纵的一系列视觉任务。我们调查剪辑视觉骨干网的有效性,以实现AI任务。我们构建令人难以置信的简单基线,名为Emplip,没有任务特定的架构,归纳偏差(如使用语义地图),培训期间的辅助任务,或深度映射 - 但我们发现我们的改进的基线在范围内表现得非常好任务和模拟器。 empclip将Robothor ObjectNav排行榜上面的20分的巨额边缘(成功率)。它使ithor 1相重新安排排行榜上面,击败了采用主动神经映射的下一个最佳提交,而且多于固定的严格度量(0.08至0.17)。它还击败了2021年栖息地对象挑战的获奖者,该挑战采用辅助任务,深度地图和人类示范以及2019年栖息地进程挑战的挑战。我们评估剪辑视觉表示在捕获有关输入观测的语义信息时的能力 - 用于导航沉重的体现任务的基元 - 并且发现剪辑的表示比想象成掠过的骨干更有效地编码这些基元。最后,我们扩展了我们的一个基线,产生了能够归零对象导航的代理,该导航可以导航到在训练期间未被用作目标的对象。
translated by 谷歌翻译