这项工作总结了2022年2022年国际生物识别联合会议(IJCB 2022)的IJCB被遮挡的面部识别竞赛(IJCB-OCFR-2022)。OCFR-2022从学术界吸引了总共3支参与的团队。最终,提交了六个有效的意见书,然后由组织者评估。在严重的面部阻塞面前,举行了竞争是为了应对面部识别的挑战。参与者可以自由使用任何培训数据,并且通过使用众所周知的数据集构成面部图像的部分来构建测试数据。提交的解决方案提出了创新,并以所考虑的基线表现出色。这项竞争的主要输出是具有挑战性,现实,多样化且公开可用的遮挡面部识别基准,并具有明确的评估协议。
translated by 谷歌翻译
更换具有智能电表的模拟仪表昂贵,艰巨,远非完全在发展中国家。ParaNa(Copel)(巴西)的能源公司每月执行超过400万米的读数(几乎完全是非智能设备),我们估计其中850万人来自拨号米。因此,基于图像的自动读取系统可以减少人类错误,创建读取证明,并使客户能够通过移动应用程序执行读取本身。我们提出了用于自动拨号抄表(ADMR)的新方法,并在不约束场景中引入ADMR的新数据集,称为UFPR-ADMR-V2。我们的最佳方法将YOLOV4与新的回归方法(ANGREG)结合起来,探讨了几种后处理技术。与以前的作品相比,它降低了1,343至129的平均绝对误差(MAE),并实现了98.90%的仪表识别率(MRR) - 误差容差为1千瓦时(千瓦时)。
translated by 谷歌翻译
由于深度学习的进步和数据集的增加,自动许可证板识别(ALPR)系统对来自多个区域的牌照(LPS)的表现显着。对深度ALPR系统的评估通常在每个数据集内完成;因此,如果这种结果是泛化能力的可靠指标,则是可疑的。在本文中,我们提出了一种传统分配的与休假 - 单数据集实验设置,以统一地评估12个光学字符识别(OCR)模型的交叉数据集泛化,其在九个公共数据集上应用于LP识别,具有良好的品种在若干方面(例如,获取设置,图像分辨率和LP布局)。我们还介绍了一个用于端到端ALPR的公共数据集,这是第一个包含带有Mercosur LP的车辆的图像和摩托车图像数量最多的图像。实验结果揭示了传统分离协议的局限性,用于评估ALPR上下文中的方法,因为在训练和测试休假时,大多数数据集在大多数数据集中的性能显着下降。
translated by 谷歌翻译
最近,几种方法探索了视频中对象的检测和分类,以便以显着的结果执行零射击动作识别。在这些方法中,类对象关系用于将视觉模式与语义侧信息相关联,因为这些关系也倾向于出现在文本中。因此,Word Vector方法将在其潜在的陈述中反映它们。灵感来自这些方法,并通过视频字幕来描述不仅具有一组对象但具有上下文信息的事件的能力,我们提出了一种方法,其中录像模型称为观察者,提供不同和互补的描述性句子。我们证明,在ZSAR中,代表具有描述性句子的视频而不是深度特征是可行的,并且自然而然地减轻了域适应问题,因为我们在UCF101数据集中达到了最先进的(SOTA)性能,并且在HMDB51上竞争性能他们的训练集。我们还展示了Word Vectors不适合构建我们描述的语义嵌入空间。因此,我们建议用从互联网上获取的搜索引擎获取的文档提取的句子代表课程,而没有任何人类评估描述的描述。最后,我们构建了在多个文本数据集上预先培训的基于BERT的eMbedder的共享语义空间。我们表明,这种预训练对于弥合语义差距至关重要。对于这两种类型的信息,视觉和语义,对此空间的投影很简单,因为它们是句子,使得在此共享空间中的最近邻居规则能够分类。我们的代码可在https://github.com/valterlej/zsarcap上找到。
translated by 谷歌翻译
我们介绍一种基于复杂事件(例如,分钟)可以分解成更简单的事件(例如,几秒钟)的前提的方法来学习无监督的语义视觉信息,并且这些简单事件在多个复杂事件中共享。我们将一个长视频分成短帧序列,以利用三维卷积神经网络提取它们的潜在表示。群集方法用于对产生视觉码本的组表示(即,长视频由集群标签给出的整数序列表示)。通过对码本条目编码共生概率矩阵来学习密集的表示。我们展示了该表示如何利用浓密视频标题任务的性能,只有视觉功能。由于这种方法,我们能够更换双模变压器(BMT)方法中的音频信号,并产生具有可比性的时间提案。此外,与Vanilla变压器方法中的我们的描述符连接视觉信号,与仅探索视觉功能的方法相比,在标题中实现最先进的性能,以及具有多模态方法的竞争性能。我们的代码可在https://github.com/valterlej/dvcusi获得。
translated by 谷歌翻译
已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
机器学习(ML)加速化学发现的两个突出挑战是候选分子或材料的合成性以及ML模型训练中使用的数据的保真度。为了应对第一个挑战,我们构建了一个假设的设计空间,为3250万转型金属复合物(TMC),其中所有组成片段(即金属和配体)和配体对称性都可以合成。为了应对第二项挑战,我们在雅各布梯子的多个梯级之间的23个密度功能近似之间搜索预测的共识。为了加快这3250万TMC的筛选,我们使用有效的全局优化来样本候选低自旋发色团,同时具有低吸收能和低静态相关性。尽管在这个大化的化学空间中的潜在发色团缺乏(即$ <$ 0.01 \%),但随着ML模型在积极学习过程中的改善,我们确定了高可能性(即$> $ 10 \%)的过渡金属发色团(即$> $ 10 \%)。这代表发现的1,000倍加速度,与几天而不是几年中的发现相对应。对候选发色团的分析揭示了对CO(III)和具有更大键饱和度的大型强野配体的偏爱。我们根据时间依赖性密度功能理论计算计算帕累托前沿上有希望的发色团的吸收光谱,并验证其中三分之二是否需要激发态特性。尽管这些复合物从未经过实验探索,但它们的组成配体在文献中表现出有趣的光学特性,体现了我们构建现实的TMC设计空间和主动学习方法的有效性。
translated by 谷歌翻译
医学图像中的自动对象识别可以促进医学诊断和治疗。在本文中,我们自动对超声图像中的锁骨神经进行了分割,以帮助注入周围神经块。神经块通常用于手术后的疼痛治疗,其中使用超声指导在靶神经旁边注入局部麻醉药。这种治疗可以阻止疼痛信号向大脑的传播,这可以帮助提高手术中的恢复速率,并显着减少术后阿片类药物的需求。但是,超声引导的区域麻醉(UGRA)要求麻醉师在视觉上识别超声图像中的实际神经位置。鉴于超声图像中神经的无视觉效果以及它们与许多相邻组织的视觉相似性,这是一项复杂的任务。在这项研究中,我们使用了自动神经检测系统进行UGRA神经阻滞治疗。该系统可以使用深度学习技术识别神经在超声图像中的位置。我们开发了一个模型来捕获神经的特征,通过训练两个具有跳过连接的深神经网络:两种扩展的U-NET体系结构,有或没有扩张的卷积。该溶液可能会导致区域麻醉中靶向神经的封锁。
translated by 谷歌翻译
与多体波函数相比,使用2电子降低密度矩阵(2RDM)编码分子的电子结构已经是一个数十年的任务,因为2RDM包含足够的信息来计算精确的分子能量,但只需要多项式存储。我们专注于具有不同构象和单体数量的线性聚合物,并表明我们可以使用机器学习来预测1电子和2电子降低密度矩阵。此外,通过将哈密顿操作员应用于预测的降低密度矩阵,我们表明我们可以恢复分子能。因此,我们证明了机器学习方法可以预测新构象和新分子的电子结构的可行性。同时,我们的工作规避了通过直接机器学习有效的有效降低密度矩阵来阻碍2RDM方法适应的N-陈述性问题。
translated by 谷歌翻译
人的大脑能够依次地学习任务,而无需忘记。但是,深度神经网络(DNN)在学习一项任务时遭受灾难性遗忘。我们考虑了一个挑战,考虑了一个课堂学习方案,在该方案中,DNN看到测试数据而不知道该数据启动的任务。在培训期间,持续的捕获和选择(CP&S)在DNN中找到了负责解决给定任务的子网。然后,在推理期间,CP&S选择正确的子网以对该任务进行预测。通过培训DNN的可用神经元连接(以前未经训练)来创建一个新的子网络,从而通过修剪来学习一项新任务,该连接可以包括以前训练的其他子网络(S),因为它没有更新共享的连接,因为它可以属于其他子网络(S)。这使得通过在DNN中创建专门的区域而不会相互冲突的同时仍允许知识转移在其中,可以消除灾难性的遗忘。 CP&S策略采用不同的子网络选择策略实施,揭示了在各种数据集(CIFAR-100,CUB-200,2011年,Imagenet-100和Imagenet-100)上测试的最先进的持续学习方法的卓越性能。特别是,CP&S能够从Imagenet-1000中依次学习10个任务,以确保94%的精度,而遗忘可忽略不计,这是课堂学习学习的首要结果。据作者所知,与最佳替代方法相比,这表示准确性高于20%的改善。
translated by 谷歌翻译