Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
事实证明,在强化学习中使用人类示范可以显着提高剂性能。但是,任何要求人手动“教”该模型的要求与强化学习的目标有些相反。本文试图通过使用通过简单使用的虚拟现实模拟收集的单个人类示例来帮助进行RL培训,以最大程度地减少人类参与学习过程的参与,同时仍保留了绩效优势。我们的方法增加了一次演示,以产生许多类似人类的演示,与深层确定性的政策梯度和事后的经验重播(DDPG + HER)相结合时,可以显着改善对简单任务的训练时间,并允许代理商解决复杂的任务(Block Block堆叠)DDPG +她一个人无法解决。该模型使用单个人类示例实现了这一重要的训练优势,需要少于一分钟的人类输入。
translated by 谷歌翻译
在这项工作中,我们使用最近引入的动态优化算法(DOA)解决了现实世界应用中IA的动态优化问题(DOA),该算法(DOA)最近引入了最近引入的。我们使用FDA从隧道上进行CCTV摄像头饲料进行IA。由于摄像机的观点可以通过多种原因(例如风,维护等)变化。需要对齐来保证基于视频的流量安全系统的正确功能。
translated by 谷歌翻译
我们通过查看在弥漫表面上铸造的对象的阴影来研究个体的生物特征识别信息的问题。我们表明,通过最大似然分析,在代表性的情况下,阴影中的生物特征信息泄漏可以足够用于可靠的身份推断。然后,我们开发了一种基于学习的方法,该方法在实际设置中证明了这种现象,从而利用阴影中的微妙提示是泄漏的来源,而无需任何标记的真实数据。特别是,我们的方法依赖于构建由从每个身份的单个照片获得的3D面模型组成的合成场景。我们以完全无监督的方式将我们从合成数据中学到的知识转移到真实数据中。我们的模型能够很好地概括到真实的域,并且在场景中的几种变体都有坚固的范围。我们报告在具有未知几何形状和遮挡对象的场景中发生的身份分类任务中的高分类精度。
translated by 谷歌翻译
3D重建问题中的一个关键问题是如何训练机器人或机器人以模型3D对象。在实时系统(例如自动驾驶汽车)中导航等许多任务直接取决于此问题。这些系统通常具有有限的计算能力。尽管近年来3D重建系统在3D重建系统中取得了长足的进展,但由于现有方法的高复杂性和计算需求,将它们应用于自动驾驶汽车中的导航系统等实时系统仍然具有挑战性。这项研究解决了以更快(实时)方式重建单视图像中显示的对象的当前问题。为此,开发了一个简单而强大的深度神经框架。提出的框架由两个组件组成:特征提取器模块和3D发电机模块。我们将点云表示为我们的重建模块的输出。将Shapenet数据集用于将方法与计算时间和准确性方面的现有结果进行比较。模拟证明了所提出的方法的出色性能。索引术语现实时间3D重建,单视图重建,监督学习,深神经网络
translated by 谷歌翻译
在探索中,由于当前的低效率而引起的强化学习领域,具有较大动作空间的学习控制政策是一个具有挑战性的问题。在这项工作中,我们介绍了深入的强化学习(DRL)算法呼叫多动作网络(MAN)学习,以应对大型离散动作空间的挑战。我们建议将动作空间分为两个组件,从而为每个子行动创建一个值神经网络。然后,人使用时间差异学习来同步训练网络,这比训练直接动作输出的单个网络要简单。为了评估所提出的方法,我们在块堆叠任务上测试了人,然后扩展了人类从Atari Arcade学习环境中使用18个动作空间的12个游戏。我们的结果表明,人的学习速度比深Q学习和双重Q学习更快,这意味着我们的方法比当前可用于大型动作空间的方法更好地执行同步时间差异算法。
translated by 谷歌翻译
我们实施和解释各种有涉及实际二次领域的监督学习实验,具有1、2和3。我们从数据科学的角度量化了匹配/不同奇偶校验的类别的相对困难,应用功能分析的方法论组件分析,并使用符号分类来开发适用于我们数据集的1、2和3类的机器学习公式。
translated by 谷歌翻译
这项研究介绍了一个称为批处理层归一化(BLN)的新的归一化层,以减少深神经网络层中内部协变量转移的问题。作为批处理和层归一化的组合版本,BLN自适应地将适当的重量放在迷你批处理上,并基于迷你批次的逆尺寸,在学习过程中将输入标准化为层。它还使用微型批量统计或人口统计数据,在推理时间执行精确的计算,并在推理时间进行较小的更改。使用迷你批量或人口统计的决策过程使BLN具有在模型的超参数优化过程中发挥全面作用的能力。 BLN的关键优势是对独立于输入数据的理论分析的支持,其统计配置在很大程度上取决于执行的任务,培训数据的量和批次的大小。测试结果表明,BLN的应用潜力及其更快的收敛性在卷积和复发性神经网络中都比批处理归一化和层归一化。实验的代码在线公开可用(https://github.com/a2amir/batch-layer-normalization)。
translated by 谷歌翻译
近年来,全球医学事物(IOMT)行业已经以极大的速度发展。由于IOMT网络的庞大规模和部署,安全和隐私是IOMT的关键问题。机器学习(ML)和区块链(BC)技术已大大提高了Healthcare 5.0的功能和设施,并产生了一个名为“ Smart Healthcare”的新领域。通过早期确定问题,智能医疗保健系统可以帮助避免长期损害。这将提高患者的生活质量,同时减少压力和医疗保健费用。 IOMT在信息技术领域中启用了一系列功能,其中之一是智能和互动的医疗保健。但是,将医疗数据合并到单个存储位置以训练强大的机器学习模型,这引起了人们对隐私,所有权和更加集中的遵守的担忧。联合学习(FL)通过利用集中式聚合服务器来传播全球学习模型,从而克服了前面的困难。同时,本地参与者可以控制患者信息,从而确保数据机密性和安全性。本文对与医疗保健中联邦学习纠缠的区块链技术的发现进行了全面分析。 5.0。这项研究的目的是利用区块链技术和入侵检测系统(IDS)在医疗保健5.0中构建安全的健康监测系统,以检测医疗保健网络中的任何恶意活动,并使医生能够通过医疗传感器监控患者并采取必要的措施。定期通过预测疾病。
translated by 谷歌翻译
种植植被是降低沉积物转移率的实用解决方案之一。植被覆盖的增加可降低环境污染和沉积物的运输速率(STR)。由于沉积物和植被相互作用复杂,因此预测沉积物的运输速率具有挑战性。这项研究旨在使用新的和优化的数据处理方法(GMDH)的新版本(GMDH)预测植被覆盖的沉积物传输速率。此外,这项研究介绍了一种用于预测沉积物传输速率的新集合模型。模型输入包括波高,波速,密度覆盖,波力,D50,植被盖的高度和盖茎直径。独立的GMDH模型和优化的GMDH模型,包括GMDH Honey Badger算法(HBA)GMDH大鼠群群算法(RSOA)VGMDH正弦余弦算法(SCA)和GMDH颗粒swarm swarm优化率(GMDH-PSO),用于预测沉积率(GMDH-PSO) 。作为下一步,使用独立的GMDH的输出来构建集合模型。合奏模型的MAE为0.145 m3/s,而GMDH-HBA,GMDH-RSOA,GMDH-SCA,GMDH-PSOA和GMDH的MAE在测试水平为0.176 M3/s,0.312 M3/s,0.367/s,0.367 M3/s,0.498 m3/s和0.612 m3/s。集合模型的Nash Sutcliffe系数(NSE),GMDH-HBA,GMDH-RSOA,GMDH-SCA,GMDH-PSOA和GHMDH分别为0.95 0.93、0.89、0.89、0.86、0.86、0.82和0.76。此外,这项研究表明,植被覆盖的沉积物运输速率降低了90%。结果表明,合奏和GMDH-HBA模型可以准确预测沉积物的传输速率。根据这项研究的结果,可以使用IMM和GMDH-HBA监测沉积物的传输速率。这些结果对于管理和规划大盆地的水资源很有用。
translated by 谷歌翻译