在迅速增长的海上风电场市场中出现了增加风力涡轮机尺寸和距离的全球趋势。在英国,海上风电业于2019年生产了英国最多的电力,前一年增加了19.6%。目前,英国将进一步增加产量,旨在增加安装的涡轮机容量74.7%,如最近的冠村租赁轮次反映。通过如此巨大的增长,该部门现在正在寻求机器人和人工智能(RAI),以解决生命周期服务障碍,以支持可持续和有利可图的海上风能生产。如今,RAI应用主要用于支持运营和维护的短期目标。然而,前进,RAI在海上风基础设施的全部生命周期中有可能发挥关键作用,从测量,规划,设计,物流,运营支持,培训和退役。本文介绍了离岸可再生能源部门的RAI的第一个系统评论之一。在当前和未来的要求方面,在行业和学术界的离岸能源需求分析了rai的最先进的。我们的评论还包括对支持RAI的投资,监管和技能开发的详细评估。通过专利和学术出版数据库进行详细分析确定的关键趋势,提供了对安全合规性和可靠性的自主平台认证等障碍的见解,这是自主车队中可扩展性的数字架构,适应性居民运营和优化的适应性规划人机互动对人与自治助理的信赖伙伴关系。
translated by 谷歌翻译
Adaptive partial linear beamforming meets the need of 5G and future 6G applications for high flexibility and adaptability. Choosing an appropriate tradeoff between conflicting goals opens the recently proposed multiuser (MU) detection method. Due to their high spatial resolution, nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity. However, a dramatic decrease in performance can be expected in high mobility scenarios because they are very susceptible to changes in the wireless channel. The robustness of linear filters is required, considering these changes. One way to respond appropriately is to use online machine learning algorithms. The theory of algorithms based on the adaptive projected subgradient method (APSM) is rich, and they promise accurate tracking capabilities in dynamic wireless environments. However, one of the main challenges comes from the real-time implementation of these algorithms, which involve projections on time-varying closed convex sets. While the projection operations are relatively simple, their vast number poses a challenge in ultralow latency (ULL) applications where latency constraints must be satisfied in every radio frame. Taking non-orthogonal multiple access (NOMA) systems as an example, this paper explores the acceleration of APSM-based algorithms through massive parallelization. The result is a GPUaccelerated real-time implementation of an orthogonal frequency-division multiplexing (OFDM)based transceiver that enables detection latency of less than one millisecond and therefore complies with the requirements of 5G and beyond. To meet the stringent physical layer latency requirements, careful co-design of hardware and software is essential, especially in virtualized wireless systems with hardware accelerators.
translated by 谷歌翻译
隐式神经表示(INR)被出现为代表信号的强大范例,例如图像,视频,3D形状等。尽管它已经示出了能够表示精细细节的能力,但其效率尚未得到广泛研究数据表示。在INR中,数据以神经网络的参数的形式存储,并且通用优化算法通常不会利用信号中的空间和时间冗余。在本文中,我们建议通过明确地删除数据冗余来表示和压缩视频的新型INR方法。我们提出了跨视频帧和残差的主体剩余流场(NRFF)而不是存储原始RGB颜色,而不是存储原始RGB颜色。维护通常更光滑和更复杂的运动信息,比原始信号更少,需要更少的参数。此外,重用冗余像素值进一步提高了网络参数效率。实验结果表明,所提出的方法优于基线方法的显着边际。代码可用于https://github.com/daniel03c1/eff_video_repruseentation。
translated by 谷歌翻译
适当地识别和处理具有显着多参考(MR)特征的分子和材料对于在虚拟高通量筛选(VHT)中实现高数据保真度至关重要。然而,使用单一功能的近似密度泛函理论(DFT)进行大多数VHT。尽管发展了许多MR诊断,但这种诊断的单一价值的程度表明了对化学性质预测的MR效应不是很好的。我们评估超过10,000个过渡金属配合物(TMC)的MR诊断方法,并与有机分子中的那些进行比较。我们透露,只有一些MR诊断程序可在这些材料空间上转移。通过研究MR特征对涉及多个潜在能量表面的化学性质(即,MR效应)的影响(即绝热自旋分裂,$ \ DELTA E_ \ MATHRM {HL} $和电离潜力,IP),我们观察到这一点先生效应的取消超过积累。 MR特征的差异比预测物业预测中MR效应的先生特征的总程度更重要。通过这种观察,我们建立转移学习模型,直接预测CCSD(T)-Level绝热$ \ Delta e_ \ Mathrm {H-L} $和IP从较低的理论。通过将这些模型与不确定量化和多级建模相结合,我们引入了一种多管策略,可将数据采集加速至少三个,同时实现鲁棒VHT的化学精度(即1 kcal / mol)。
translated by 谷歌翻译
无线电贴图在无线通信和移动机器人任务中找到了许多应用,包括资源分配,干扰协调和任务规划。尽管已经提出了许多技术来构造来自空间分布测量的无线电映射,但是预先假定了这种测量的位置的位置。相反,本文提出了频谱测量,其中诸如无人航空车辆(UAV)的移动机器人在主动选择的一组位置处收集测量以在短测量时间内获得高质量地图估计。这是以两步执行的。首先,设计了两种新颖的算法,基于模型的在线贝叶斯估计器和数据驱动的深度学习算法,以更新地图估计和指示每个可能位置的测量信息的信息性。这些算法提供互补的益处,并且每次测量都具有恒定的复杂性。其次,不确定度量用于规划无人机的轨迹,以在最具信息地的位置收集测量。为了克服这个问题的组合复杂性,提出了一种动态编程方法,以通过线性时间的大不确定性的区域获取航路点列表。在现实数据集上进行的数值实验证实了所提出的方案快速构建精确的无线电贴图。
translated by 谷歌翻译
我们介绍了基于两种称为延迟边缘化的新技术的单眼视觉惯性径流系统和姿势图束调节。 DM-VIO使用动态重量进行光度束调节,可视于可视残留。我们采用边缘化,这是一种流行的策略,以保持更新时间约束,但它不易颠倒,连接变量的线性化点必须固定。为了克服这一点,我们提出了延迟边缘化:这个想法是维持第二个因素图,其中边缘化被延迟。这允许我们稍后再读这种延迟图,在新的和一致的线性化点之前产生更新的边缘化。此外,延迟边缘化使我们能够将IMU信息注入已经边缘化的状态。这是所提出的姿势图束调整的基础,我们用于IMU初始化。与先前的IMU初始化的工作相比,它能够捕获完整的光度不确定性,从而提高规模估计。为了应对最初的不可观察的规模,在IMU初始化完成后,我们将继续优化主系统中的比例和重力方向。我们在EUROC,TUM-VI和4SEASONS数据集中评估我们的系统,该数据集包括飞行无人机,大规模手持设备和汽车场景。由于建议的IMU初始化,我们的系统超过了视觉惯性内径测量仪的最新状态,即使仅使用单个摄像头和IMU的同时表现出立体惯性方法。该代码将在http://vision.in.tum.de/dm-vio发布
translated by 谷歌翻译
基于相机的非接触式光电子溶血性描绘是指一组流行的非接触生理测量技术。目前的最先进的神经模型通常以伴随金标准生理测量的视频以监督方式培训。但是,它们通常概括域名差别示例(即,与培训集中的视频不同)。个性化模型可以帮助提高型号的概括性,但许多个性化技术仍然需要一些金标准数据。为了帮助缓解这一依赖性,在本文中,我们展示了一种名为Mobilememon的新型移动感应系统,该系统是第一个移动个性化远程生理传感系统,它利用智能手机上的前后相机,为培训产生高质量的自我监督标签个性化非接触式相机的PPG模型。为了评估MobilemeLephys的稳健性,我们使用39名参与者进行了一个用户学习,他们在不同的移动设备下完成了一组任务,照明条件/强度,运动任务和皮肤类型。我们的研究结果表明,Mobilephys显着优于最先进的设备监督培训和几次拍摄适应方法。通过广泛的用户研究,我们进一步检查了Mobilephys如何在复杂的真实环境中执行。我们设想,从我们所提出的双摄像机移动传感系统产生的校准或基于相机的非接触式PPG模型将为智能镜,健身和移动健康应用等许多未来应用打开门。
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
尽管最近在机器学习用于自然语言处理的机器学习方面,但自然语言推论(NLI)问题仍然是挑战。为此目的,我们贡献了一个新的数据集,专注于事实现象;但是,我们的任务与其他NLI任务保持相同,即引起的征集,矛盾或中性(ECN)。 DataSet在波兰语中包含完全自然语言话语,收集2,432个动词补充对和309个独特的动词。 DataSet基于国家波兰语(NKJP)的国家语料库,是主要动词频率和其他语言特征的代表性样本(例如,内部否定的发生)。我们发现,基于变压器的基于判决的模型获得了相对良好的结果($ \ \左右89 \%$ F1得分)。尽管使用语言特征实现了更好的结果($ \大约91 \%$ F1得分),但这种模型需要更多人工劳动力(循环中的人类),因为专家语言学家手动制备特征。基于BERT的模型仅消耗输入句子表明,它们捕获了NLI / Factivity的大部分复杂性。现象中的复杂病例 - 例如具有权利(e)和非致命动词的案件 - 仍然是进一步研究的开放问题。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译