医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译
尽管结果令人印象深刻,但深度学习的技术还引起了经常在数据中心进行的培训程序引起的严重隐私和环境问题。作为回应,已经出现了集中培训的替代方案,例如联邦学习(FL)。也许出乎意料的是,FL开始在全球范围内部署,这些公司必须遵守源自倡导隐私保护的政府和社会团体的新法律要求和政策。 \ textit {但是,与FL有关的潜在环境影响仍然不清楚和未开发。本文提供了有关佛罗里达碳足迹的首次系统研究。然后,我们将FL的碳足迹与传统的集中学习进行了比较。我们的发现表明,根据配置,FL可以比集中的机器学习高达两个数量级。但是,在某些情况下,由于嵌入式设备的能源消耗减少,它可以与集中学习相提并论。我们使用FL进行了不同类型的数据集,设置和各种深度学习模型的广泛实验。最后,我们强调并将报告的结果与FL的未来挑战和趋势联系起来,以减少其环境影响,包括算法效率,硬件能力和更强的行业透明度。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
准确地估算主要山区盆地中的积雪对于水资源经理来说至关重要,以便做出影响当地和全球经济,野生动植物和公共政策的决策。目前,此估计需要多个配备LIDAR的飞机飞行或原位测量值,两者均昂贵,稀疏和对可访问区域有偏见。在本文中,我们证明了来自多个,公开可用的卫星和天气数据源的空间和时间信息的融合,可以估算关键山区的积雪。我们的多源模型的表现优于单源估计值5.0英寸RMSE,并且优于稀疏的原位测量值的估计值1.2英寸RMSE。
translated by 谷歌翻译
诊断将音频流划分为基于扬声器的声音。包括入学步骤的实时诊断系统应限制入学培训样本,以减少用户交互时间。尽管对少数样品的培训产生的性能较差,但我们表明,使用年代自我训练方法可以大大提高准确性。我们研究了训练时间和分类性能之间的权衡,发现1秒足以达到超过95%的精度。我们从6种不同的语言中评估了700个音频对话文件约10分钟,并证明平均诊断错误率低至10%。
translated by 谷歌翻译
Boll Weevil(Anthonomus Grandis L.)是一种严重的害虫,主要以棉花为食。由于亚热带气候条件,在德克萨斯州的下里奥格兰德山谷等地方,棉花植物可以全年生长,因此,收获期间上一个季节的剩下的种子可以在玉米中的旋转中继续生长(Zea Mays L.)和高粱(高粱双色L.)。这些野性或志愿棉花(VC)植物到达Pinhead平方阶段(5-6叶阶段)可以充当Boll Weevil Pest的宿主。得克萨斯州的鲍尔象鼻虫根除计划(TBWEP)雇用人们在道路或田野侧面生长的风险投资和消除旋转作物的田间生长,但在田野中生长的植物仍未被发现。在本文中,我们证明了基于您的计算机视觉(CV)算法的应用,仅在三个不同的生长阶段(V3,V6)(V3,V6)中检测出在玉米场中生长的VC植物,以检测在玉米场中生长的VC植物的应用。使用无人飞机系统(UAS)遥感图像。使用Yolov5(S,M,L和X)的所有四个变体,并根据分类精度,平均平均精度(MAP)和F1得分进行比较。发现Yolov5s可以在玉米的V6阶段检测到最大分类精度为98%,地图为96.3%,而Yolov5s和Yolov5m的地图为96.3%,而Yolov5m的分类精度为85%,Yolov5m和Yolov5m的分类准确性最小,而Yolov5L的分类精度最少。在VT阶段,在尺寸416 x 416像素的图像上为86.5%。开发的CV算法有可能有效地检测和定位在玉米场中间生长的VC植物,并加快TBWEP的管理方面。
translated by 谷歌翻译
储层计算是一种机器学习方法,可以生成动态系统的替代模型。它可以使用较少的可训练参数来学习基础动力系统,从而比竞争方法更少。最近,一种更简单的公式(称为下一代储层计算)可以去除许多算法的元掌握器,并识别出良好的传统储层计算机,从而进一步简化了训练。在这里,我们研究了一个特别具有挑战性的问题,即学习具有不同时间尺度和多个共存动态状态(吸引子)的动态系统。我们使用量化地面真相和预测吸引子的几何形状的指标比较了下一代和传统的储层计算机。对于所研究的四维系统,下一代储层计算方法使用$ \ sim 1.7 \ times $少培训数据,需要$ 10^3 \ times $ $ shorter $ shorter“热身”时间,具有$ \ \ \ \ \ \ \ \ \ \ \ \ \ SIM 100 \ times $与传统的储层计算机相比,预测共存吸引人特性的精度更高。此外,我们证明了它以高精度预测吸引力的盆地。这项工作为动态系统的这种新机器学习算法的出色学习能力提供了进一步的支持。
translated by 谷歌翻译
这项工作介绍了使用伪层作为费米子决定因素的随机估计量的费米子晶状体理论中基于流动采样的量规均值架构。这是最先进的晶格场理论计算中的默认方法,这使得对流向模型在QCD等理论的实际应用至关重要。还概述了通过标准技术(例如/奇数预处理和HasenBusch分解)来改进基于流的采样方法的方法。提供了二维U(1)和SU(3)具有$ n_f = 2 $ FERMIONS的量规理论的数值演示。
translated by 谷歌翻译
为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新感染,目前的志愿棉花(VC)(VC)(gossypium hirsutum L.)植物检测玉米(Zea Mays L.)和Sorghum等旋转作物中的植物检测(高粱双色L.)涉及在田野边缘的手动田地侦察。这导致许多风险植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以充当鲍尔维尔虫害的宿主。因此,需要检测,定位,然后精确地用化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和伽马校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位在康沃尔场的流苏中间(VT)生长阶段生长的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%,分类精度为78%,大小为1207 x 923像素的分类精度为78%,平均推理速度在NVIDIA上的平均推理速度接近47帧(FPS) NVIDIA JETSON TX2 GPU上的Tesla P100 GPU-16GB和0.4 fps。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测和缓解为了有效地管理鲍尔象鼻虫害虫。
translated by 谷歌翻译
在过去的几年中,自主驾驶社区取得了巨大进展。然而,作为一个关键问题的问题,异常检测是朝着现实世界中大规模部署自动驾驶汽车的巨大障碍。尽管许多方法,例如不确定性估计或基于分割的图像重新合成,这是非常有希望的,但还有更多的探索。特别受到基于图像重新合成的异常检测作品的启发,我们提出了一种通过样式转移进行异常检测的新方法。我们利用生成模型将图像从其原始风格的道路交通域映射到任意型号,然后返回以生成Pixelwise Anomaly分数。但是,我们的实验证明了我们的假设错误,我们无法产生重大结果。但是,我们想分享我们的发现,以便其他人可以从我们的实验中学习。
translated by 谷歌翻译