本文解决了颞句的接地。以前的作品通常通过学习帧级视频功能来解决此任务并将其与文本信息对齐。这些作品的一个主要限制是,由于帧级特征提取,它们未能利用具有微妙的外观差异的模糊视频帧。最近,一些方法采用更快的R-CNN来提取每帧中的详细物体特征来区分细粒的外观相似性。然而,由于对象检测模型缺乏时间建模,因此通过更快的R-CNN提取的对象级别特征遭受缺失的运动分析。为了解决这个问题,我们提出了一种新颖的运动外观推理网络(MARN),其包括动作感知和外观感知对象特征,以更好的原因对象关系来建立连续帧之间的活动。具体而言,我们首先介绍两个单独的视频编码器以将视频嵌入到相应的主导和外观 - 方面对象表示中。然后,我们开发单独的运动和外观分支,以分别学习运动引导和外观引导的对象关系。最后,来自两个分支的运动和外观信息都与用于最终接地的更多代表性的特征相关联。对两个具有挑战性的数据集(Chardes-Sta和Tacos)的广泛实验表明,我们提出的马恩在以前的最先进的方法中大大优于大幅度。
translated by 谷歌翻译
时间句地接地(TSG)是视频理解的关键和基础。虽然现有方法训练具有大量数据的精心设计的深网络,但我们发现他们可以轻松忘记由于偏移数据分布而在训练阶段的很少出现的情况,这影响了模型概括并导致不希望的表现。为了解决这个问题,我们提出了一个内存增强的网络,称为内存引导的语义学习网络(MGSL-net),它学习并记住在TSG任务中的很少出现的内容。具体而言,MGSL-Net由三个主要部件组成:跨模型互动模块,存储器增强模块和异构注意力模块。我们首先将给定的视频查询对与跨模型图卷积网络对齐,然后利用内存模块在域特定的持久存储器中记录跨模板共享语义功能。在培训期间,内存插槽与常见和罕见的案例动态相关,减轻了遗忘问题。在测试中,可以通过检索存储的存储器来提高罕见的情况,从而产生更好的概括。最后,使用异构注意力模块在视频和查询域中集成增强的多模态特征。三个基准测试的实验结果表明了我们对效率和效率的方法的优势,这在整个数据集上显着提高了准确性,而且在罕见的情况下也是如此。
translated by 谷歌翻译
虽然近年来,在2D图像领域的攻击和防御中,许多努力已经探讨了3D模型的脆弱性。现有的3D攻击者通常在点云上执行点明智的扰动,从而导致变形的结构或异常值,这很容易被人类察觉。此外,它们的对抗示例是在白盒设置下产生的,当转移到攻击远程黑匣子型号时经常遭受低成功率。在本文中,我们通过提出一种新的难以察觉的转移攻击(ITA):1)难以察觉的3D点云攻击来自两个新的和具有挑战性的观点:1)难以察觉:沿着邻域表面的正常向量限制每个点的扰动方向,导致产生具有类似几何特性的示例,从而增强了难以察觉。 2)可转移性:我们开发了一个对抗性转变模型,以产生最有害的扭曲,并强制实施对抗性示例来抵抗它,从而提高其对未知黑匣子型号的可转移性。此外,我们建议通过学习更辨别的点云表示来培训更强大的黑盒3D模型来防御此类ITA攻击。广泛的评估表明,我们的ITA攻击比最先进的人更令人无法察觉和可转让,并验证我们的国防战略的优势。
translated by 谷歌翻译
正交统计学习和双机器学习已成为在存在滋扰成分的情况下,作为两阶段统计预测的一般框架。我们对具有满足自我符合性能的损失功能的正交统计学习方法的过量风险建立了非扰动界限。我们的界限在提升强凸度的假设时,通过维数因子来改善现有界限。我们用来自多个治疗效应估计的示例和广义部分线性建模来说明结果。
translated by 谷歌翻译
现有研究持续学习一系列任务,专注于处理灾难性遗忘,其中任务被认为是不同的,并且具有很少的共享知识。在任务相似并分享知识时,还有一些工作已经完成了将以前学到的新任务转移到新任务。据我们所知,没有提出任何技术来学习一系列混合类似和不同的任务,这些任务可以处理遗忘,并转发知识向前和向后转移。本文提出了这样的技术,用于在同一网络中学习两种类型的任务。对于不同的任务,该算法侧重于处理遗忘,并且对于类似的任务,该算法侧重于选择性地传送从一些类似先前任务中学到的知识来改善新的任务学习。此外,该算法自动检测新任务是否类似于任何先前的任务。使用混合任务序列进行实证评估,证明了所提出的模型的有效性。
translated by 谷歌翻译
近年来,最终用户的多个(边缘)设备中有大量分散数据,而由于法律或法规,分散数据的聚合对机器学习工作仍然困难。联合学习(FL)作为处理分散数据而不分享敏感原始数据的有效方法,同时协作培训全球机器学习模型。 FL中的服务器需要在培训过程中选择(和计划)设备。但是,具有FL的多个作业的设备的调度仍然是一个关键和打开的问题。在本文中,我们提出了一种新的多工作FL框架,以实现多个作业的并行培训过程。该框架包括系统模型和两个调度方法。在系统模型中,我们提出了多个作业的并行培训过程,并根据各种工作培训过程基于培训时间和各种设备的数据公平构建成本模型。我们提出了一种基于钢筋的基于学习的方法和基于贝叶斯优化的方法,以便为多个作业调度设备,同时最小化成本。我们通过多个工作和数据集进行广泛的实验。实验结果表明,我们提出的方法在培训时间(速度越快8.67倍)和准确性(高度高达44.6%)方面显着优于基线。
translated by 谷歌翻译
深度加强学习(DRL)在游戏和机器人控制等应用中彻底改变了学习和致动。数据收集的成本,即从代理环境互动产生转变,仍然是在复杂的现实问题中更广泛的DRL采用的重大挑战。在GPU云平台上培训DRL代理的云原生范例是一个有前途的解决方案。在本文中,我们为云天然深层加固学习提供了一种可扩展和弹性图书馆优雅的钢茶,其有效地支持数百万GPU核心,以便在多个层面进行大规模平行的训练。在一个高级别的优雅普罗拉科尔使用基于锦标赛的集合计划,以协调数百个甚至数千个GPU的培训过程,安排排行榜与培训池与数百个豆荚之间的相互作用。在低级,每个POD通过在单个GPU中充分利用近7,000个GPU CUDA核心,模拟了代理环境的交互。我们的优雅RL-Podracer Library通过遵循集装箱,微服务和MLOPS的开发原则,具有高可扩展性,弹性和可访问性。使用NVIDIA DGX SuperPod Cloud,我们对机器人和股票交易中的各种任务进行了广泛的实验,并表明Elegitrl-Podracer大大优于Rllib。我们的代码可在GitHub上获得。
translated by 谷歌翻译
最近,刘和张研究了从压缩传感的角度研究了时间序列预测的相当具有挑战性的问题。他们提出了一个没有学习的方法,名为卷积核规范最小化(CNNM),并证明了CNNM可以完全从其观察到的部分恢复一系列系列的部分,只要该系列是卷积的低级。虽然令人印象深刻,但是每当系列远离季节性时可能不满足卷积的低秩条件,并且实际上是脆弱的趋势和动态的存在。本文试图通过将学习,正常的转换集成到CNNM中,以便将一系列渐开线结构转换为卷积低等级的常规信号的目的。我们证明,由于系列的变换是卷积低级的转换,所以,所产生的模型是基于学习的基于学习的CNNM(LBCNM),严格成功地识别了一个系列的未来部分。为了学习可能符合所需成功条件的适当转换,我们设计了一种基于主成分追求(PCP)的可解释方法。配备了这种学习方法和一些精心设计的数据论证技巧,LBCNM不仅可以处理时间序列的主要组成部分(包括趋势,季节性和动态),还可以利用其他一些预测方法提供的预测;这意味着LBCNNM可以用作模型组合的一般工具。从时间序列数据库(TSDL)和M4竞争(M4)的100,452个现实世界时间序列的大量实验证明了LBCNNM的卓越性能。
translated by 谷歌翻译
在本文中,我们介绍了TweetNLP,这是社交媒体中自然语言处理(NLP)的集成平台。TweetNLP支持一套多样化的NLP任务,包括诸如情感分析和命名实体识别的通用重点领域,以及社交媒体特定的任务,例如表情符号预测和进攻性语言识别。特定于任务的系统由专门用于社交媒体文本的合理大小的基于变压器的语言模型(尤其是Twitter)提供动力,无需专用硬件或云服务即可运行。TweetNLP的主要贡献是:(1)使用适合社会领域的各种特定于任务的模型,用于支持社交媒体分析的现代工具包的集成python库;(2)使用我们的模型进行无编码实验的交互式在线演示;(3)涵盖各种典型社交媒体应用的教程。
translated by 谷歌翻译
当观察结果被截断时,我们仅限于数据集的不完整图片。最近的方法通过转向得分匹配来处理截短的密度估计问题,而不需要访问棘手的归一化常数。我们为Riemannian歧管提供了一个新颖的扩展,以截断得分匹配。在$ \ r^3 $中的二维领域上向von Mises-Fisher和Kent发行版提供了申请,以及美国极端风暴观察的现实应用。在模拟数据实验中,我们的分数匹配估计器能够以较低的估计误差近似于真实的参数值,并显示出比最大似然估计器的改进。
translated by 谷歌翻译