神经网络(NNS)也很难有效地学习某些问题,例如奇偶校验问题,即使对于这些问题有简单的学习算法。NNS可以自己发现学习算法吗?我们展示了一个NN体系结构,在多项式时期,可以通过恒定尺寸的学习算法来学习以及任何有效的学习算法。例如,在奇偶校验问题上,NN学习和减少行,这是一种可以简单描述的有效算法。我们的体系结构结合了层和卷积重量共享之间的重复分享,即使网络本身可能具有数万亿个节点,也将参数数量降低到常数。在实践中,我们的分析中的常数太大而无法直接有意义,但我们的工作表明,经常性和卷积NNS(RCNN)的协同作用可能比单独的任何一个更强大。
translated by 谷歌翻译
当我们扩大数据集,模型尺寸和培训时间时,深入学习方法的能力中存在越来越多的经验证据。尽管有一些关于这些资源如何调节统计能力的说法,但对它们对模型培训的计算问题的影响知之甚少。这项工作通过学习$ k $ -sparse $ n $ bits的镜头进行了探索,这是一个构成理论计算障碍的规范性问题。在这种情况下,我们发现神经网络在扩大数据集大小和运行时间时会表现出令人惊讶的相变。特别是,我们从经验上证明,通过标准培训,各种体系结构以$ n^{o(k)} $示例学习稀疏的平等,而损失(和错误)曲线在$ n^{o(k)}后突然下降。 $迭代。这些积极的结果几乎匹配已知的SQ下限,即使没有明确的稀疏性先验。我们通过理论分析阐明了这些现象的机制:我们发现性能的相变不到SGD“在黑暗中绊倒”,直到它找到了隐藏的特征集(自然算法也以$ n^中的方式运行{o(k)} $ time);取而代之的是,我们表明SGD逐渐扩大了人口梯度的傅立叶差距。
translated by 谷歌翻译
机械通气是ICU中最广泛使用的疗法中最广泛的疗法之一。然而,尽管在麻醉与科迪德相关的终身支持中具有广泛的应用,但仍有许多有害挑战。我们将这些视为控制问题:呼吸机必须根据规定的气道压力轨迹进出患者的肺部。基于PID方法的行业标准控制器既不是最佳的也不是强大的。我们的数据驱动方法学习通过在从呼吸机收集的数据上培训的模拟器本身进行培训来控制侵入式呼吸机。该方法优于流行的加固学习算法,甚至比PID更精确且强大地控制物理呼吸机。这些结果强调了有效的数据驱动方法可以用于侵入性通风,并表明更通用的通风形式(例如,无侵入性,适应性)也可能是可享受的。
translated by 谷歌翻译
自我注意事项是一种旨在在顺序数据中建模远程相互作用的建筑主题,它推动了自然语言处理及其他方面的许多最新突破。这项工作提供了对自我发项模块的归纳偏差的理论分析。我们的重点是严格确定哪些功能和远程依赖性自我注意力障碍更喜欢代表。我们的主要结果表明,有限的 - 标志变压器网络“创建稀疏变量”:单个自我发项头可以代表输入序列的稀疏函数,样品复杂性仅与上下文长度进行对数。为了支持我们的分析,我们提出了合成实验,以探测学习稀疏的布尔功能与变压器的样本复杂性。
translated by 谷歌翻译
控制理论中的一个基本概念是可控性,可以通过适当的控制输入选择来达到任何系统状态。确实,大量的古典和现代方法是为可控的线性动力系统设计的。但是,在实践中,我们经常遇到系统,其中大量状态变量与控制输入无关。这样的系统仅是部分控制的。这项工作的重点是大量部分可控制的线性动力学系统,该系统由潜在的稀疏模式指定。我们的主要结果建立了结构性条件和有限样本保证,以学习控制此类系统。特别是,我们的结构结果是那些与最佳控制无关的状态变量的特征,该分析偏离了经典的控制技术。我们的算法结果适应了高维统计数据(尤其是软阈值和半参数最小二乘方形),以利用潜在的稀疏模式,以获得有限样本的保证,从而显着改善了基于一定程度等值的有限样本。我们还通过模拟研究证实了这些理论改进,而不是确定性等效控制。
translated by 谷歌翻译
Existing training criteria in automatic speech recognition(ASR) permit the model to freely explore more than one time alignments between the feature and label sequences. In this paper, we use entropy to measure a model's uncertainty, i.e. how it chooses to distribute the probability mass over the set of allowed alignments. Furthermore, we evaluate the effect of entropy regularization in encouraging the model to distribute the probability mass only on a smaller subset of allowed alignments. Experiments show that entropy regularization enables a much simpler decoding method without sacrificing word error rate, and provides better time alignment quality.
translated by 谷歌翻译
We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a design where the neural segmenter is integrated with the causal 1st pass decoder to emit a end-of-segment (EOS) signal in real-time. The EOS signal is then used to finalize the non-causal 2nd pass. We experiment with different ways to finalize the 2nd pass, and find that a novel dummy frame injection strategy allows for simultaneous high quality 2nd pass results and low finalization latency. On a real-world long-form captioning task (YouTube), we achieve 2.4% relative WER and 140 ms EOS latency gains over a baseline VAD-based segmenter with the same cascaded encoder.
translated by 谷歌翻译
Providing accurate estimated time of package delivery on users' purchasing pages for e-commerce platforms is of great importance to their purchasing decisions and post-purchase experiences. Although this problem shares some common issues with the conventional estimated time of arrival (ETA), it is more challenging with the following aspects: 1) Inductive inference. Models are required to predict ETA for orders with unseen retailers and addresses; 2) High-order interaction of order semantic information. Apart from the spatio-temporal features, the estimated time also varies greatly with other factors, such as the packaging efficiency of retailers, as well as the high-order interaction of these factors. In this paper, we propose an inductive graph transformer (IGT) that leverages raw feature information and structural graph data to estimate package delivery time. Different from previous graph transformer architectures, IGT adopts a decoupled pipeline and trains transformer as a regression function that can capture the multiplex information from both raw feature and dense embeddings encoded by a graph neural network (GNN). In addition, we further simplify the GNN structure by removing its non-linear activation and the learnable linear transformation matrix. The reduced parameter search space and linear information propagation in the simplified GNN enable the IGT to be applied in large-scale industrial scenarios. Experiments on real-world logistics datasets show that our proposed model can significantly outperform the state-of-the-art methods on estimation of delivery time. The source code is available at: https://github.com/enoche/IGT-WSDM23.
translated by 谷歌翻译
本文解决了利益区域(ROI)计算机断层扫描(CT)的图像重建问题。尽管基于模型的迭代方法可用于此问题,但由于乏味的参数化和缓慢的收敛性,它们的实用性通常受到限制。另外,当保留的先验不完全适合溶液空间时,可以获得不足的溶液。深度学习方法提供了一种快速的替代方法,从大型数据集中利用信息,因此可以达到高重建质量。但是,这些方法通常依赖于不考虑成像系统物理学的黑匣子,而且它们缺乏可解释性通常会感到沮丧。在两种方法的十字路口,最近都提出了展开的深度学习技术。它们将模型的物理和迭代优化算法纳入神经网络设计中,从而在各种应用中均具有出色的性能。本文介绍了一种新颖的,展开的深度学习方法,称为U-RDBFB,为ROI CT重建而设计为有限的数据。由于强大的非凸数据保真功能与稀疏性诱导正则化功能相结合,因此有效地处理了很少的截断数据。然后,嵌入在迭代重新加权方案中的块双重前向(DBFB)算法的迭代将在神经网络体系结构上展开,从而以监督的方式学习各种参数。我们的实验显示了对各种最新方法的改进,包括基于模型的迭代方案,深度学习体系结构和深度展开的方法。
translated by 谷歌翻译
自动故事生成(ASG)的研究在很大程度上依赖于人类和自动评估。但是,尚无共识在哪些人类评估标准上使用,也没有分析自动标准与它们相关的良好状况。在本文中,我们建议重新评估ASG评估。我们介绍了由社会科学文学精心促进的6种正交和全面的人类标准。我们还提出了汉娜(Hanna),这是一个由10种不同ASG系统制作的1,056个故事的注释数据集。汉娜(Hanna)允许我们定量评估72个自动指标与人类标准的相关性。我们的分析强调了ASG当前指标的弱点,并使我们能够为ASG评估提出实用建议。
translated by 谷歌翻译