随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
域泛化(DG)的主要挑战是克服多个训练域和看不见的测试域之间的潜在分布偏移。一类流行的DG算法旨在学习在训练域中具有不变因果关系的表示。但是,某些特征,称为\ emph {伪不变特征},可能是培训域中的不变性,但不是测试域,并且可以大大降低现有算法的性能。为了解决这个问题,我们提出了一种新颖的算法,称为不变信息瓶颈(IIB),该算法学习跨越训练和测试域的最小值的最小值。通过最大限度地减少表示和输入之间的相互信息,IIB可以减轻其对伪不变特征的依赖,这对于DG是期望的。为了验证IIB原则的有效性,我们对大型DG基准进行了广泛的实验。结果表明,在两个评估度量标准中,IIB的IIIb平均超过2.8 \%和3.8 \%的准确性。
translated by 谷歌翻译
最近对物体检测的自我监督预防方法在很大程度上专注于预先绘制物体探测器的骨干,忽略了检测架构的关键部分。相反,我们介绍了DetReg,这是一种新的自我监督方法,用于预先列出整个对象检测网络,包括对象本地化和嵌入组件。在预先绘制期间,DetReg预测对象本地化以与无监督区域提议生成器匹配本地化,并同时将相应的特征嵌入与自我监控图像编码器的嵌入式对齐。我们使用DETR系列探测器实施DetReg,并显示它在Coco,Pascal VOC和空中客车船基准上的Fineetuned时改善了竞争性基线。在低数据制度中,包括半监督和几秒钟学习设置,DetReg建立了许多最先进的结果,例如,在Coco上,我们看到10次检测和+3.5的AP改进A +6.0 AP改进当培训只有1%的标签时。对于代码和预用模型,请访问https://amirbar.net/detreg的项目页面
translated by 谷歌翻译
鉴于无线频谱的有限性和对无线通信最近的技术突破产生的频谱使用不断增加的需求,干扰问题仍在继续持续存在。尽管最近解决干涉问题的进步,但干扰仍然呈现出有效使用频谱的挑战。这部分是由于Wi-Fi的无许可和管理共享乐队使用的升高,长期演进(LTE)未许可(LTE-U),LTE许可辅助访问(LAA),5G NR等机会主义频谱访问解决方案。因此,需要对干扰稳健的有效频谱使用方案的需求从未如此重要。在过去,通过使用避免技术以及非AI缓解方法(例如,自适应滤波器)来解决问题的大多数解决方案。非AI技术的关键缺陷是需要提取或开发信号特征的域专业知识,例如CycrationArity,带宽和干扰信号的调制。最近,研究人员已成功探索了AI / ML的物理(PHY)层技术,尤其是深度学习,可减少或补偿干扰信号,而不是简单地避免它。 ML基于ML的方法的潜在思想是学习来自数据的干扰或干扰特性,从而使需要对抑制干扰的域专业知识进行侧联。在本文中,我们审查了广泛的技术,这些技术已经深入了解抑制干扰。我们为干扰抑制中许多不同类型的深度学习技术提供比较和指导。此外,我们突出了在干扰抑制中成功采用深度学习的挑战和潜在的未来研究方向。
translated by 谷歌翻译
合成孔径声纳(SAS)图像分辨率受波形带宽和阵列几何结构的约束。具体地,波形带宽确定点扩展函数(PSF),其将点散射体的位置模糊在场景中。理论上,用场景PSF解码重建的SAS图像恢复散射体的原始分布,并产生更清晰的重建。然而,去卷积是一种对噪声高度敏感的不良操作。在这项工作中,我们利用隐式的神经表示(inrs),被证明是自然图像空间的强前沿,以解构SAS图像。重要的是,我们的方法不需要培训数据,因为我们通过以自我监督的方式进行分析逐个合金优化来执行Deconvolution。我们验证了我们在使用点散射模型创建的模拟SAS数据的方法和用空内圆形SA捕获的真实数据。这项工作是应用SAS图像解卷积的神经网络的重要第一步。
translated by 谷歌翻译
现代深度学习框架提供嵌入在Python中的必要的急切执行编程接口,以提供生产的开发体验。但是,深度学习从业者有时需要捕获和转换程序结构以进行性能优化,可视化,分析和硬件集成。我们研究了深度学习中使用的程序捕获和转型的不同设计。通过设计典型的深度学习用例而不是长尾部,可以为程序捕获和转换创建更简单的框架。我们在Torch.fx中应用了这一原理,是一个完全在Python写入的Pytorch的程序捕获和转换库,并通过ML从业者进行高开发人员生产力优化。我们存在案例研究,展示了Torch.fx如何实现先前在Pytorch生态系统中无法访问的工作流程。
translated by 谷歌翻译
雅典娜2.0是一家亚历克萨奖的社会奖,这是最后两个Alexa奖奖挑战的决赛。雅典娜成功的一个原因是其新的对话管理战略,它允许它动态构建组件模块的对话和响应,导致每个互动的新型对话。在这里,我们在20/21竞争期间描述了Athena的Alexa奖的系统设计和性能。雅典娜的活跃演示以及视频录音将挑起对话AI的艺术状态的讨论。
translated by 谷歌翻译
开放式对话系统的一个挑战是需要对任何主题产生真实,高质量的响应。我们的目标是提高Athena的质量和覆盖,Alexa奖项对话系统。我们试验几次以初步的提示学习,将GPT-Neo与侏罗纪-1比较,用于电影,音乐,电视,运动和视频游戏域,包括不同的提示设定大小(2, 3,10),格式和意义表示由一组Wikidata Kg三元组或对话行为组成。我们的评估使用BLEurt和人类指标,并表明,随着10次提示,雅典娜 - 侏罗纪的表现对于连贯性和语义准确性明显更好。 2-Shot跨域提示的实验导致雅典娜-GPT-NEO的巨大性能下降,其语义精度下降至0.41,其不真实的幻率增加到12%。对对话行为进行视频游戏的实验表明,随着10次提示,两种模型都学会控制对话行为,但犹太犹太人的一致性较高,只有4%的幻觉。我们的结果表明,雅典娜 - 侏罗纪产生足够高的质量产出,可用于具有真实用户的现场系统。据我们所知,这些是第一个展示基于几枪语的语义及时的学习的第一次结果,可以创建对新域推广的NLG,并直接从意义表示产生高质量,语义控制的会话响应。
translated by 谷歌翻译