预测具有微观结构的材料的代表性样品的演变是均质化的基本问题。在这项工作中,我们提出了一种图形卷积神经网络,其利用直接初始微结构的离散化表示,而无需分割或聚类。与基于特征和基于像素的卷积神经网络模型相比,所提出的方法具有许多优点:(a)它是深入的,因为它不需要卵容,但可以从中受益,(b)它具有简单的实现使用标准卷积滤波器和层,(c)它在没有插值的非结构化和结构网格数据上本身工作(与基于像素的卷积神经网络不同),并且(d)它可以保留与其他基于图形的卷积神经网络等旋转不变性。我们展示了所提出的网络的性能,并将其与传统的基于像素的卷积神经网络模型和基于传统的像素的卷积神经网络模型进行比较,并且在多个大型数据集上的基于特征的图形卷积神经网络。
translated by 谷歌翻译