这项工作引入了离题,这是一种用于生成具有分类节点和边缘属性图的图形的离散denoising扩散模型。我们的模型定义了一个扩散过程,该过程逐步编辑了具有噪声(添加或删除边缘,更改类别)的图形以及学会恢复此过程的图形变压器网络。有了这两种成分,我们将分布学习将上的分布学习减少到一个简单的分类任务序列。我们通过提出一个新的马尔可夫噪声模型来进一步提高样品质量,该模型在扩散过程中保留节点和边缘类型的边际分布,并通过在每个扩散步骤中添加从嘈杂图中得出的辅助图理论特征。最后,我们提出了一个指导程序,以根据图形级特征调理生成。总体而言,离题可以在分子和非分子数据集上达到最新性能,在平面图数据集上,有效性提高了3倍。特别是,这是第一个模型,将鳞片缩放到包含130万个药物样分子的大型鳄梨调子数据集,而无需使用分子特异性表示,例如微笑或片段。
translated by 谷歌翻译
我们考虑一拍概率解码器,该解码器在分布上映射到集合或图形之前的矢量形状。这些功能可以集成到变分性自动化器(VAE),生成的对抗网络(GAN)或标准化流动中,并在药物发现中具有重要应用。设置和图形生成最常通过生成点(有时是边缘权重)i.i.d.从正态分布,使用变压器层或图形神经网络处理它们以及先前的向量。该架构旨在产生可交换的分布(集合的所有排列同样可能),但由于I.I.D的随机性,难以训练。一代。我们提出了一种新的对抗性定义,并表明,VAES和GAN中的交换性实际上是不必要的。然后,我们引入TOP-N,一个确定性,不可交换的集合创建机制,该创建机制学会从培训参考集中选择最相关的点。 Top-n可以替换i.i.d.在任何VAE或GaN中生成 - 它更容易训练,更好地捕获数据中的复杂依赖关系。 Top-n优于I.I.D在SetMnist重建时生成15%,生成较近合成分子数据集的真正分布的34%的集合,并且能够在经典QM9数据集上培训时产生更多样化的分子。随着一次性生成的改进基础,我们的算法有助于设计更有效的分子生成方法。
translated by 谷歌翻译
Transformers have proved to be very effective for visual recognition tasks. In particular, vision transformers construct compressed global representations through self-attention and learnable class tokens. Multi-resolution transformers have shown recent successes in semantic segmentation but can only capture local interactions in high-resolution feature maps. This paper extends the notion of global tokens to build GLobal Attention Multi-resolution (GLAM) transformers. GLAM is a generic module that can be integrated into most existing transformer backbones. GLAM includes learnable global tokens, which unlike previous methods can model interactions between all image regions, and extracts powerful representations during training. Extensive experiments show that GLAM-Swin or GLAM-Swin-UNet exhibit substantially better performances than their vanilla counterparts on ADE20K and Cityscapes. Moreover, GLAM can be used to segment large 3D medical images, and GLAM-nnFormer achieves new state-of-the-art performance on the BCV dataset.
translated by 谷歌翻译
In this paper, we investigate the problem of multi-domain translation: given an element $a$ of domain $A$, we would like to generate a corresponding $b$ sample in another domain $B$, and vice versa. Acquiring supervision in multiple domains can be a tedious task, also we propose to learn this translation from one domain to another when supervision is available as a pair $(a,b)\sim A\times B$ and leveraging possible unpaired data when only $a\sim A$ or only $b\sim B$ is available. We introduce a new unified framework called Latent Space Mapping (\model) that exploits the manifold assumption in order to learn, from each domain, a latent space. Unlike existing approaches, we propose to further regularize each latent space using available domains by learning each dependency between pairs of domains. We evaluate our approach in three tasks performing i) synthetic dataset with image translation, ii) real-world task of semantic segmentation for medical images, and iii) real-world task of facial landmark detection.
translated by 谷歌翻译
Commonly adopted in the manufacturing and aerospace sectors, digital twin (DT) platforms are increasingly seen as a promising paradigm to control, monitor, and analyze software-based, "open", communication systems. Notably, DT platforms provide a sandbox in which to test artificial intelligence (AI) solutions for communication systems, potentially reducing the need to collect data and test algorithms in the field, i.e., on the physical twin (PT). A key challenge in the deployment of DT systems is to ensure that virtual control optimization, monitoring, and analysis at the DT are safe and reliable, avoiding incorrect decisions caused by "model exploitation". To address this challenge, this paper presents a general Bayesian framework with the aim of quantifying and accounting for model uncertainty at the DT that is caused by limitations in the amount and quality of data available at the DT from the PT. In the proposed framework, the DT builds a Bayesian model of the communication system, which is leveraged to enable core DT functionalities such as control via multi-agent reinforcement learning (MARL), monitoring of the PT for anomaly detection, prediction, data-collection optimization, and counterfactual analysis. To exemplify the application of the proposed framework, we specifically investigate a case-study system encompassing multiple sensing devices that report to a common receiver. Experimental results validate the effectiveness of the proposed Bayesian framework as compared to standard frequentist model-based solutions.
translated by 谷歌翻译
本文比较了软件定义网络中的网络安全性的两种深入强化学习方法。对深Q网络的神经情节控制已实施,并将其与双重深Q网络进行了比较。这两种算法以类似于零和游戏的格式实现。对两个游戏结果进行了两尾t检验分析,其中包含为防守者赢得的冠军的数量。另一个比较是在各自游戏中代理商的游戏得分上进行的。进行分析是为了确定哪种算法是游戏表演者最好的算法,以及它们之间是否存在显着差异,证明一个算法是否会更偏爱另一个。发现两种方法之间没有显着统计差异。
translated by 谷歌翻译
大型变压器模型实现了自然语言理解任务的最新状态,并越来越成为建模源代码的基线模型体系结构。通常,变压器在大型无监督的语料库中进行预训练,学习令牌表示和与通常可用的文本相关的转换,然后对特定的下游感兴趣的任务进行微调。虽然微调是一种尝试将模型调整为新领域的久经考验的方法(例如,在给定主题上提出问题,概括仍然是一个持续的挑战。在本文中,我们探索并评估了变形金刚的模型以进行个性化。在为Java方法生成单元测试的背景下,我们评估学习以使用多种个性化技术为特定的软件项目个性化。我们考虑三种关键方法:(i)自定义微调,这允许调整所有模型参数; (ii)轻巧的微调,它冻结了大多数模型的参数,可以单独调整令牌嵌入和SoftMax层或单独的最终层; (iii)前缀调整,该调谐使模型参数冻结,但优化了小型项目特定的前缀矢量。这些技术中的每一个都提供了总计算成本和预测性能的权衡,我们通过代码和特定任务指标,培训时间和总计算操作进行评估。我们比较了这些微调策略以生成代码,并讨论了各种部署方案中每个策略的潜在概括和成本益处。
translated by 谷歌翻译
本文介绍了一个修改后的用户数据报协议(UDP),用于联合学习,以确保模型参数传输过程中的效率和可靠性,从而在每个联合学习回合中最大程度地发挥全局模型的潜力。在开发和测试此协议时,使用NS3模拟器来模拟通过网络的数据包传输,而Google TensorFlow用于创建自定义的联合学习环境。在此初步实现中,模拟包含三个节点,其中两个节点是客户端节点,一个是服务器节点。本文获得的结果提供了对未来联邦学习的协议能力的信心协议和修改后的UDP协议将进行模拟。还将探索修改后的UDP的优化,以提高效率,同时确保可靠性。
translated by 谷歌翻译
捕获图像的全局拓扑对于提出对其域的准确分割至关重要。但是,大多数现有的分割方法都不能保留给定输入的初始拓扑,这对许多下游基于对象的任务有害。对于大多数在本地尺度上工作的深度学习模型来说,这是更真实的。在本文中,我们提出了一种新的拓扑深度图像分割方法,该方法依赖于新的泄漏损失:Pathloss。我们的方法是Baloss [1]的扩展,其中我们希望改进泄漏检测,以更好地恢复图像分割的接近度。这种损失使我们能够正确定位并修复预测中可能发生的关键点(边界中的泄漏),并基于最短路径搜索算法。这样,损失最小化仅在必要时才能强制连接,并最终提供了图像中对象边界的良好定位。此外,根据我们的研究,与无需使用拓扑损失的方法相比,我们的Pathloss学会了保持更强的细长结构。通过我们的拓扑损失函数培训,我们的方法在两个代表性数据集上优于最先进的拓扑感知方法:电子显微镜和历史图。
translated by 谷歌翻译
目的是对临床文本去识别的自然语言处理(NLP)模型的评估取决于临床注释的可用性,临床注释通常由于隐私问题而受到限制。 NLP沙盒是一种通过采用联合模型到数据的方法来减轻NLP模型缺乏数据和评估框架的方法。这使得无偏见的联合模型评估无需共享多个机构的敏感数据。材料和方法我们利用Synapse协作框架,容器化软件和OpenAPI Generator来构建NLP沙盒(NLPSANDBOX.IO)。我们使用来自三个机构的数据评估了两个最先进的NLP去识别注释模型Philter和Neuroner。我们使用来自外部验证站点的数据进一步验证了模型性能。结果我们通过去识别临床模型评估证明了NLP沙箱的有用性。外部开发人员能够将其模型纳入NLP沙盒模板中,并提供用户体验反馈。讨论我们证明了使用NLP沙箱对临床文本去识别模型进行多站点评估的可行性,而无需共享数据。标准化模型和数据模式可以使模型传输和实现平稳。为了概括NLP沙箱,数据所有者和模型开发人员需要进行工作,以开发合适和标准化的模式,并调整其数据或模型以适合模式。结论NLP沙箱降低了利用临床数据进行NLP模型评估的障碍,并促进了联合会的NLP模型的联合,多站点,无偏见的评估。
translated by 谷歌翻译