基于屏障函数的控制证书一直是一个强大的工具,可能为动态系统生成可能的安全控制策略。但是,基于屏障证书的现有方法通常用于具有可微差动态的白盒系统,这使得它们可以不适用于系统是黑盒的许多实用应用,并且不能准确地建模。另一方面,黑盒系统的无模型加强学习(RL)方法缺乏安全保证和低采样效率。在本文中,我们提出了一种新的方法,可以为黑盒动态系统学习安全控制政策和屏障证书,而无需准确的系统模型。我们的方法即使在黑盒式动态系统是不可差分的情况下,我们也可以重新设计损耗函数以反向传播梯度对控制策略,并且我们表明安全证书在黑盒系统上保持。仿真的经验结果表明,与最先进的黑匣子安全控制方法相比,我们的方法可以通过实现近100%的安全性和目标来实现近100%的安全性和目标达到速度。我们的学习代理商也可以在保持原始性能的同时概括取消观察方案。源代码可以在https://github.com/zengyi-qin/bcbf找到。
translated by 谷歌翻译