面部变形攻击检测具有挑战性,并为面部验证系统带来了具体和严重的威胁。此类攻击的可靠检测机制已通过强大的跨数据库协议和未知的变形工具进行了测试,这仍然是一项研究挑战。本文提出了一个框架,遵循了几次射击学习方法,该方法使用三胞胎 - 硬性损坏共享基于暹罗网络的图像信息,以应对变形攻击检测并增强聚类分类过程。该网络比较了真正的或潜在的变形图像与变形和真正的面部图像的三胞胎。我们的结果表明,这个新的网络将数据点群集成,并将它们分配给类,以便在跨数据库方案中获得较低的相等错误率,仅共享来自未知数据库的小图像编号。几乎没有学习的学习有助于增强学习过程。使用FRGCV2训练并使用FERET和AMSL开放式数据库测试的跨数据库的实验结果将BPCer10使用RESNET50和5.50%的MobileNETV2从43%降低到4.91%。
translated by 谷歌翻译
增强隐私技术是实施基本数据保护原则的技术。关于生物识别识别,已经引入了不同类型的隐私增强技术来保护储存的生物特征识别数据,这些数据通常被归类为敏感。在这方面,已经提出了各种分类法和概念分类,并进行了标准化活动。但是,这些努力主要致力于某些隐私增强技术的子类别,因此缺乏概括。这项工作概述了统一框架中生物识别技术隐私技术的概念。在每个处理步骤中,详细介绍了现有概念之间的关键方面和差异。讨论了现有方法的基本属性和局限性,并与数据保护技术和原理有关。此外,提出了评估生物识别技术的隐私技术评估的场景和方法。本文是针对生物识别数据保护领域的进入点,并针对经验丰富的研究人员以及非专家。
translated by 谷歌翻译
通过大规模数据实现具有面部识别的高度安全的应用程序(如边境交叉路)需要广泛的生物识别性能测试。然而,使用真实面部图像引起了对隐私的担忧,因为法律不允许图像用于其他目的而不是最初的目的。使用代表和面部数据的子集还可以导致不需要的人口统计偏见并导致数据集不平衡。克服这些问题的一种可能解决方案是用综合生成的样本替换真实的面部图像。在生成合成图像的同时,从计算机视觉中的最新进步中受益,虽然有利于电脑视觉的最新进步,但在类似实际变化的同一合成标识的多个样本中仍然是不合适的,即交配样本。这项工作提出了一种通过利用样式牢固的潜在空间来生成配合的面部图像的非确定性方法。通过操纵潜伏的矢量来产生交配的样本,更精确地,我们利用主成分分析(PCA)来定义潜在空间中的语义有意义的方向,并使用预先训练的面部识别系统控制原始样本和配合样本之间的相似性。我们创建了由77,034个样本组成的合成面图像(Symface)的新数据集,包括25,919个合成ID。通过我们的分析,使用良好的面部图像质量指标,我们展示了模仿真实生物识别数据的特征的合成样本的生物识别质量的差异。其分析和结果表明使用使用所提出的方法创建的合成样本作为更换真实生物识别数据的可行替代品。
translated by 谷歌翻译
删除身份证图像中的背景是远程验证系统的真正挑战,因为许多重新数字化图像存在杂乱的背景,照明条件差,失真和闭塞。 ID卡图像中的背景使分类器和文本提取困扰。由于缺乏用于研究的可用图像,该领域今天代表了计算机愿景中的一个开放问题。这项工作提出了一种使用ID卡的语义分割来删除背景的方法。最后,使用由45,007张图像组成的手动标记的数据集在实际操作中捕获的图像,其中包括来自三个国家(智利,阿根廷和墨西哥)的五种类型的ID卡,包括典型的演示攻击情景。该方法可以帮助改进常规身份验证或文档篡改检测系统中的以下阶段。根据MobileNet和DenSenet10探索了两种深入学习方法。使用MobileNet获得最佳结果,具有650万参数。智利身份证的平均交叉路口(IOO)在4,988张图像的私人测试数据集中为0.9926。来自智利,阿根廷和墨西哥的ID卡片图像的融合多国数据集的最佳成果达到了0.9911的IOU。所提出的方法是重量轻,足以用于移动设备上的实时操作。
translated by 谷歌翻译
在最近的过去,不同的研究人员提出了新的隐私增强的人脸识别系统,旨在在特征级别隐藏软生物信息。这些作品报告了令人印象深刻的结果,但通常在他们对隐私保护的分析中不考虑具体攻击。在大多数情况下,通过简单的基于机器学习的分类器和维度减少工具的可视化测试这些方案的隐私保护能力。在这项工作中,我们介绍了一个关于基于级别的面部软生物识别隐私 - 增强技术的攻击。攻击基于两个观察:(1)实现高度识别准确性,面部陈述之间的某些相似之处必须保留在其隐私增强版本中; (2)高度相似的面部表示通常来自具有相似软生物识别属性的面部图像。基于这些观察,所提出的攻击将隐私增强的面部表示与具有已知的软生物识别属性的一组隐私增强的面部表示进行了比较。随后,分析了最佳获得的相似度分数以推断攻击隐私增强的面部表示的未知软生物识别属性。也就是说,攻击仅需要一个相对较小的任意面部图像数据库和作为黑盒的隐私增强的人脸识别算法。在实验中,该攻击应用于先前据报道的两种代表性方法,以可靠地隐藏在隐私增强的面部陈述中的性别。结果表明,所呈现的攻击能够规避隐私提升到相当程度,并且能够正确地对性别进行分类,以准确性为分析的隐私增强面部识别系统的准确性高达约90%。
translated by 谷歌翻译
面部变形攻击可以通过利用其漏洞来危及面部识别系统(FRS)。近期已经开发了脸部变形攻击检测(Mad)技术,以阻止这种攻击和减轻传感攻击的风险。疯狂算法,因为任何其他算法应该以相同的方式对不同种族起源的受试者的图像进行处理,并提供非歧视性结果。虽然对稳健性进行了测试的承诺疯狂算法,但没有全面的基准标记对不同种族的行为。在本文中,我们研究并呈现了对现有的基于单图像的变形攻击检测(S-MAD)算法的算法公平的综合分析。我们试图更好地了解民族偏见对疯狂算法的影响以及在这方面,我们研究了由四个不同种族组成的新创建数据集的MAD算法的表现。通过使用六种不同的S-MAD技术进行广泛的实验,我们首先使用公平差异率(FDR)测量检测性能的基准,然后测量它们每个每个算法公平的定量值。结果表明,在不同种族群体的培训和测试时,所有六种不同的S-MAD方法都表明缺乏公平性,这表明需要可靠的疯狂方法来减轻算法偏差。
translated by 谷歌翻译
呈现攻击检测(PAD)方法的稳健性和泛化能力至关重要,以确保面部识别系统(FRSS)的安全性。但是,在真实的场景中,呈现攻击(PAS)是各种各样的且难以收集的。现有焊盘方法高度依赖于有限的训练集,并且不能概括到未知的PAS。与PAD任务不同,可以有效地采用其他与真实面(例如面部识别和属性编辑)训练的其他与面部识别和属性编辑)培训的其他相关任务。灵感来自于此,我们建议从其他与面部相关的任务应用任务(任务分类)来解决面板,以改善检测PAS的泛化能力。所提出的方法,首先从其他面部相关任务引入任务特定功能,然后,我们使用曲线图注意网络(GAT)来设计跨模型适配器来重新绘制此类功能以适应焊盘任务。最后,通过使用基于CNN的PA检测器和重新映射特征的分层特征来实现面板。实验结果表明,与最先进的方法相比,该方法可以在复杂和混合数据集中实现显着的改进。特别是,当使用Oulu-NPU,Casia-Fasd和IDIAP重放攻击训练时,我们在MSU-MFSD中获得了5.48%的HTET(半总错误率),优于基准7.39%。代码将公开可用。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
近年来,在数字病理应用中,在研究和临床环境中越来越普遍的部署这些模型的部署证明了在数字病理应用中的深度学习模型的开发方面取得了巨大进步。尽管此类模型在解决DP应用程序中的基本计算任务方面表现出了前所未有的表现,但在适应转移学习的看不见数据时,它们会遭受灾难性的遗忘。随着对深度学习模型的需求越来越多地处理不断变化的数据分布,包括不断发展的患者人群和新的诊断测定法,持续的学习模型减轻了模型忘记的遗忘,需要在基于DP的分析中引入。但是,据我们所知,没有针对DP特定应用的此类模型的系统研究。在这里,我们提出了DP设置中的CL方案,其中的组织病理学图像数据来自不同来源/分布,其知识已集成到单个模型中,而无需从头开始训练所有数据。然后,我们建立了一个用于结直肠癌H&E分类的增强数据集,以模拟图像外观的变化,并在拟议的CL方案中评估了CL模型性能。我们利用乳腺肿瘤H&E数据集以及结直肠癌来评估不同肿瘤类型的CL。此外,我们在注释和计算资源的限制下在在线几弹性设置中评估了CL方法。我们揭示了DP应用中CL的有希望的结果,这可能为这些方法在临床实践中的应用铺平了道路。
translated by 谷歌翻译
对于深层网络而言,这是一个非常理想的属性,可与小型输入更改保持强大。实现此属性的一种流行方法是设计具有小Lipschitz常数的网络。在这项工作中,我们提出了一种用于构建具有许多理想属性的Lipschitz网络的新技术:它可以应用于任何线性网络层(完全连接或卷积),它在Lipschitz常数上提供了正式的保证,它是易于实施和运行效率,可以与任何培训目标和优化方法结合使用。实际上,我们的技术是文献中第一个同时实现所有这些属性的技术。我们的主要贡献是基于重新的重量矩阵参数化,该参数保证每个网络层最多具有LIPSCHITZ常数,并且导致学习的权重矩阵接近正交。因此,我们称这种层几乎是正交的Lipschitz(AOL)。在图像分类的背景下,实验和消融研究具有认证的鲁棒精度证实,AOL层获得与大多数现有方法相当的结果。但是,它们更容易实现,并且更广泛地适用,因为它们不需要计算昂贵的矩阵正交化或反转步骤作为网络体系结构的一部分。我们在https://github.com/berndprach/aol上提供代码。
translated by 谷歌翻译