通过大规模数据实现具有面部识别的高度安全的应用程序(如边境交叉路)需要广泛的生物识别性能测试。然而,使用真实面部图像引起了对隐私的担忧,因为法律不允许图像用于其他目的而不是最初的目的。使用代表和面部数据的子集还可以导致不需要的人口统计偏见并导致数据集不平衡。克服这些问题的一种可能解决方案是用综合生成的样本替换真实的面部图像。在生成合成图像的同时,从计算机视觉中的最新进步中受益,虽然有利于电脑视觉的最新进步,但在类似实际变化的同一合成标识的多个样本中仍然是不合适的,即交配样本。这项工作提出了一种通过利用样式牢固的潜在空间来生成配合的面部图像的非确定性方法。通过操纵潜伏的矢量来产生交配的样本,更精确地,我们利用主成分分析(PCA)来定义潜在空间中的语义有意义的方向,并使用预先训练的面部识别系统控制原始样本和配合样本之间的相似性。我们创建了由77,034个样本组成的合成面图像(Symface)的新数据集,包括25,919个合成ID。通过我们的分析,使用良好的面部图像质量指标,我们展示了模仿真实生物识别数据的特征的合成样本的生物识别质量的差异。其分析和结果表明使用使用所提出的方法创建的合成样本作为更换真实生物识别数据的可行替代品。
translated by 谷歌翻译