最近的工作表明,学习的图像压缩策略可以倾销标准的手工制作压缩算法,这些压缩算法已经开发了几十年的速率 - 失真折衷的研究。随着计算机视觉的不断增长的应用,来自可压缩表示的高质量图像重建通常是次要目标。压缩,可确保计算机视觉任务等高精度,例如图像分割,分类和检测,因此具有跨各种设置的显着影响的可能性。在这项工作中,我们开发了一个框架,它产生适合人类感知和机器感知的压缩格式。我们表明可以了解到表示,同时优化核心视觉任务的压缩和性能。我们的方法允许直接从压缩表示培训模型,并且这种方法会产生新任务和低拍学习设置的性能。我们呈现出与标准高质量JPG相比细分和检测性能提高的结果,但是在每像素的比特方面,表示表示的表示性比率为4至10倍。此外,与天真的压缩方法不同,在比标准JEPG的十倍小的级别,我们格式培训的分段和检测模型仅在性能下遭受轻微的降级。
translated by 谷歌翻译
模糊或神经模糊系统的主要限制是他们无法处理高维数据集的故障。这主要是由于使用T-Norm,特别是产品或最小(或其更软的版本)。因此,几乎没有任何处理与尺寸超过一百个以上的数据集。在这里,我们提出了一种神经模糊框架,可以处理尺寸甚至超过7000的数据集!在这种情况下,我们提出了一种自适应软培蛋白(ADA-Softmin),其有效地克服了在处理高维问题的同时为现有的模糊系统产生的“数字下溢”和“假最小最小值”的缺点。我们称之为Adaptive Takagi-Sugeno-kang(Adatsk)模糊系统。然后,我们用综合方式装备ADATSK系统以执行特征选择和规则提取。在这种情况下,仅在随后的零件中引入并嵌入了一种新颖的栅极功能,其可以在学习的两个连续阶段中确定有用的特征和规则。与传统的模糊规则基础不同,我们设计增强的模糊规则基础(EN-FRB),该基础(EN-FRB)保持了足够的规则,但不会以模糊神经网络的尺寸呈指数呈指数规则的数量。集成特征选择和规则提取ADATSK(FSRE-ADATSK)系统由三个连续阶段组成:(i)特征选择,(ii)规则提取,和(iii)微调。 FSRE-Adatsk的有效性在19个数据集上展示了五个,其中五个是2000多个维度,包括两个大于7000的尺寸。这可能是第一次模糊系统实现涉及超过7000个输入功能的分类。
translated by 谷歌翻译
预先训练的语言模型(LMS)通常逻辑地扭转或以组成方式概括。最近的工作表明,结合外部实体知识可以提高LMS的能力和推广。然而,明确提供实体抽象的效果仍然不清楚,特别是在最近的研究表明,预先训练的LMS已经在其参数中编码了一些知识。我们研究将实体型抽象的实用程序融入预先训练的变压器,并在需要不同形式的逻辑推理的四个NLP任务上测试这些方法:(1)与基于文本的关系推理(CLUTRR)的组成语言理解,(2)绑架推理(校对者),(3)多跳问题应答(HotpotQA),和(4)会话问题应答(COQA)。我们提出并经验探索了三种方法来添加此类抽象:(i)作为附加输入嵌入式,(ii)作为编码的单独序列,(iii)作为模型的辅助预测任务。总体而言,我们的分析表明,具有抽象实体知识的模型比没有它更好。然而,我们的实验还表明,强烈的益处取决于所使用的技术和手头的任务。与基线模型相比,最佳抽象意识模型分别达到了88.8%和91.8%的总精度,分别在CLUTRR和校对者上实现了62.3%和89.8%。此外,抽象感知模型在插值和外推设置中显示出改善的组成概括。然而,对于热杆菌和CoQA,我们发现F1分数平均仅提高0.5%。我们的结果表明,明确抽象的好处在正式定义的逻辑推理设置中需要许多推理跳跃,但指向它对具有较少正式逻辑结构的NLP任务不利的概念。
translated by 谷歌翻译
本文介绍了一种新的基于神经网络的估计方法,它受到生物现象的启发,其中人类和动物的关注程度和努力的程度,他们根据其困难而致力于问题。拟议的方法利用替代模型对自己的预测中的信心的内部水平。如果最低昂贵的模型在其分类中充满信心,那么就是所用的分类;如果不是,则具有下一个最低成本实现的模型是运行的,等等。这种情况下,通过连续更复杂的模型 - 与模型的内部倾向分数一起评估它们是正确的可能性 - 使得可以在保持高标准的分类精度的同时大大降低资源使用。该方法应用于Google的街景房屋号码数据集的数字识别问题,使用多层的Perceptron(MLP)神经网络在数字图像的高和低分辨率版本上培训。该算法首先检查低分辨率图像,如果初始低分辨率通过的分类没有高度的置信度,则仅移动到更高分辨率的图像。对于这里考虑的MLP,这种顺序方法可以降低超过50 \%的资源使用,而不牺牲分类准确性。
translated by 谷歌翻译
通过整合外部知识可以增强机器学习。这种称为知识知识机器学习的方法也适用于预后和健康管理领域(PHM)。在本文中,通过帮助读者理解域的目标来审查各种知识知识机器学习方法。此外,还使用公共IMS和Prentia轴承数据集进行了解知识知识的机器学习技术,用于剩余使用寿命(RUL)预测。具体而言,从通过Weibull分布代表的可靠性工程领域获得知识。然后通过新颖的Weibull基损耗函数将知识集成到神经网络中。进行了对基于Weibull的损耗函数的全面统计分析,展示了该方法对手持数据集的有效性。但是,基于Weibull的损耗函数对IMS数据集的损失函数较小。该方法的结果,缺点和益处长度讨论。最后,所有代码都公开可用于其他研究人员的利益。
translated by 谷歌翻译
偏差对假设形成的影响特征在于自动化数据驱动投影追求神经网络,以提取和选择数据流的二进制分类的特征。此智能探索流程将一个完整的向量状态空间分区为不相交的子空间,以创建通过在两组标记数据流之间观察到的相似之处和差异来创建工作假设。数据流通常是时间测序,并且可以表现出复杂的时空模式。例如,给定的来自分子动力学仿真的原子轨迹,机器的任务是通过比较蛋白质突变体,一些已知的功能来量化促进功能的动态机制,而其他功能是非功能。利用模仿功能性和非功能突蛋白的动态的合成二维分子,在机器学习模型和选择的培训数据下识别并控制偏差,并在不同的环境下进行偏置。基于相关的视角,工作假设的改进融合到统计上稳健的多变量对数据的感知。在数据探索期间包括不同的视角,增强了多元性表征相似性和差异的可解释性。
translated by 谷歌翻译
机器学习系统经常在培训和测试之间遇到分发转变。在本文中,我们介绍了一个简单的变分目标,其OptiCa正好成为所有表现形式的集合,在那种情况下,保证风险最小化者对保留贝叶斯预测因子的任何分配换档,例如协变量。我们的目标有两个组成部分。首先,表示必须保持对任务的判别,即,一些预测指标必须能够同时最小化来源和目标风险。其次,代表性的边际支持需要跨源头和目标相同。我们通过设计自我监督的学习方法来实现这一实用,只使用未标记的数据和增强来培训强大的陈述。我们的目标在域底实现最先进的结果,并对最近的方法(如剪辑)的稳健性提供洞察力。
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
最佳运输(OT)及其熵正则后代最近在机器学习和AI域中获得了很多关注。特别地,最优传输已被用于在概率分布之间开发概率度量。我们在本文中介绍了基于熵正常的最佳运输的独立性标准。我们的标准可用于测试两个样本之间的独立性。我们为测试统计制定非渐近界,研究其在零和替代假设下的统计行为。我们的理论结果涉及来自U-Process理论和最佳运输理论的工具。我们在现有的基准上提出了实验结果,说明了所提出的标准的兴趣。
translated by 谷歌翻译
相对色彩恒定是许多科学成像应用的重要要求。然而,大多数数码相机在其图像形成和本机传感器输出中的不同通常无法访问,例如,在智能手机相机应用中。这使得难以在一系列设备上实现一致的颜色评估,并且破坏了计算机视觉算法的性能。若要解决此问题,我们提出了一种颜色对齐模型,将相机映像形成为黑盒,并将颜色对准作为三步处理:相机响应校准,响应线性和颜色匹配。所提出的模型采用非标准颜色参考,即,通过利用新颖的线性距离特征,在不知道真实颜色值的情况下,颜色斑块。它相当于通过无监督过程确定相机参数。它还适用于跨图像的最小相应颜色块,以进行颜色,以提供适用的处理。在各种照明和曝光条件下由多个摄像机收集的两个具有挑战性的图像数据集用于评估模型。性能基准证明,与其他流行和最先进的方法相比,我们的模型实现了卓越的性能。
translated by 谷歌翻译