深度学习中的关键挑战之一是检测对抗例的有效策略的定义。为此,我们提出了一种名为Ensemble对抗探测器(EAD)的新型方法,用于识别对抗性示例,在标准的多字节分类场景中。 EAD结合了多个检测器,该检测器利用了预先训练的深神经网络(DNN)内部表示中的输入实例的不同属性。具体而言,EAD基于Mahalanobis距离和局部内在的维度(盖子)与基于单级支持向量机(OSVM)的新引进的方法集成了最先进的探测器。尽管所有构成方法都假定测试实例从一组正确分类的训练实例的距离越大,但概率越高,其是对手示例的概率越高,它们在计算距离的方式中不同。为了利用不同方法的有效性在捕获数据分布的不同特性,因此,有效地解决泛化和过度装备之间的权衡,EAD采用探测器特定的距离分数作为逻辑回归分类器的特征,独立的超公数后优化。我们在不同的数据集(CIFAR-10,CiFar-100和SVHN)和模型(Reset和Densenet)上评估了EAD方法,以及通过与竞争方法进行比较,关于四个对抗性攻击(FGSM,BIM,DeepFool和CW)。总的来说,我们表明EAD达到了最大的Auroc和Aupr在大多数设置和其他方面的表现。对现有技术的改进以及容易延伸EAD以包括任何任意探测器的可能性,铺平了在普遍示例性检测的广场上广泛采用的集合方法。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
事件摄像机是新型生物启发传感器,其异步捕获“事件”形式的像素级强度变化。由于它们的传感机制,事件相机几乎没有运动模糊,这是一个非常高的时间分辨率,并且需要比传统的基于帧的相机更小的电力和存储器。这些特性使它们成为一个完美的拟合若干现实世界应用,如在可穿戴设备上的专门动作识别,其中快速相机运动和有限的电力挑战传统视觉传感器。然而,迄今为止,基于事件的愿景的不断增长的愿景领域已经忽略了在此类应用中的活动摄像机的潜力。在本文中,我们表明事件数据是自我监测行动识别的非常有价值的模态。为此,我们介绍了N-EPIC-Kitchens,这是大型史诗厨房数据集的第一个基于事件的相机扩展。在此背景下,我们提出了两种策略:(i)使用传统的视频处理架构(E $ ^ 2 $(GO))和(ii)使用事件数据直接处理事件相机数据(E $ ^ 2 $(GO))和蒸馏光流信息(E $ ^ 2 $(go)mo)。在我们提出的基准测试中,我们表明事件数据为RGB和光流提供了可比性的性能,但在部署时没有任何额外的流量计算,以及相对于RGB的信息高达4%的性能。
translated by 谷歌翻译
业务流程偏差是指业务流程执行的子集的现象,以消极或积极的方式偏离{他们的预期或理想的结果。业务流程的偏差执行包括违反合规规则的人,或者欠冲前或超过绩效目标的执行。偏差挖掘涉及通过分析支持业务流程的系统存储的事件日志来揭示揭示异常执行的原因。在本文中,首先通过基于顺序和声明模式模式的特征和它们的组合来研究解释业务流程的偏差问题。然后,通过基于纯数据属性值和数据感知声明规则利用事件日志中的事件日志和迹线的数据属性来进一步提高说明。然后通过用于规则感应的直接和间接方法来提取表征消化的解释。使用来自多个域的实际日志,根据他们准确地区分过程的非偏差和异常执行能力以及决赛的可理解性的能力来评估一系列特征类型和不同形式的决策规则。返回给用户的结果。
translated by 谷歌翻译
从生物学中汲取灵感,我们描述了用单眼摄像机的视觉感测可以提供可靠的移动机器人的可靠信号。这项工作从李和红麦(自然,1981,https://doi.org/10.1038/293293a0)中汲取了经典纸张的灵感在其中,他们概述了潜水海鸟基于视觉提示追求的行为策略-接触。定义了一个密切相关的时间到过境时间的概念,是定义的,并显示了基于Tau单层相机看法的理想转向法律可以可靠地且强大地刺激在各种各样的空间内的移动车辆,其中躺在墙壁上,环境中的其他物体提供足够的视觉线索。纸张的贡献是两倍。它提供了一种简单的基于稳健的视觉转向控制理论。它继续展示理论如何指导使用ROS-Gazebo模拟的强大的视觉导航的实现以及配备相机的豺狼机器人的部署和实验。据我们所知,下面描述的实验是第一个证明基于TAU的视觉导航的实验。
translated by 谷歌翻译
超材料是复合材料,具有工程化几何微观和中间结构,可以导致罕见的物理性质,如负泊松的比例或超低剪切电阻。周期性超材料由重复单元 - 细胞组成,并且这些单元电池内的几何图案影响弹性或声波和控制分散的传播。在这项工作中,我们开发了一种新的可解释,多分辨率的机器学习框架,用于在揭示其动态特性的材料的单元单元中查找模式。具体而言,我们提出了两个新的超材料的新可解释表示,称为形状频率特征和单元 - 单元格模板。使用这些要素类构建的机器学习模型可以准确地预测动态材料属性。这些特征表示(特别是单个单元格模板)具有有用的属性:它们可以在更高分辨率的设计上运行。通过学习可以通过形状频率特征或单元 - 单元模板可靠地传送到更精细的分辨率设计空间的关键粗略尺度模式,我们几乎可以自由地设计单元单元的精细分辨率特征而不改变粗略级别物理。通过这种多分辨率方法,我们能够设计具有目标频率范围的材料,其中允许或不允许波传播(频率带盖)。我们的方法产生了重大好处:(1)与材料科学的典型机器学习方法不同,我们的模型是可解释的,(2)我们的方法利用多分辨率属性,(3)我们的方法提供了设计灵活性。
translated by 谷歌翻译
检测行李中的非法和威胁物品是最大的安全问题之一。即使对于经验丰富的安全人员来说,手动检测也是一种耗时和压力的任务。许多学者都创建了自动框架,用于检测行李X射线扫描的可疑和违禁品数据。然而,为了我们的知识,不存在利用时间行李X射线图像的框架,以有效地筛选高度隐藏和闭塞物体,即使赤裸的眼睛也几乎看不到。为了解决这个问题,我们提出了一种新型的时间融合驱动的多尺度残余方式编码器 - 解码器,将一系列连续扫描作为输入,并融合它们以产生可疑和不可疑行李内容的不同特征表示,导致更准确提取违禁品数据。使用可公开访问的GDXRAY数据集已彻底测试所提出的方法,该数据集是包含时间链接的灰度X射线扫描的唯一数据集,其展示了极其隐藏的违禁品数据。拟议的框架在各种度量标准上的GDXRay数据集上占据了竞争对手。
translated by 谷歌翻译
物体的内部材料特性,而对人眼不可见,确定在其表面上观察到的运动。我们提出一种方法,该方法从其表面振动的单眼视频估计物体的异质材料特性。具体来说,我们展示了如何在具有已知几何形状的3D对象中估算杨氏模量和密度。了解这些值如何变化对象的变化对于模拟其运动和表征任何缺陷非常有用。传统的非破坏性测试方法,通常需要昂贵的仪器,通常只估计均质材料特性或只是识别缺陷的存在。相反,我们的方法利用单目一体视频来从物体的子像素运动识别图像空间模式,(2)直接从观察到的模式推断出空间不同的杨氏模量和密度值。我们在模拟和真实视频上展示了我们的方法。
translated by 谷歌翻译