在视觉上丰富的文件(VRD)上的结构化文本理解是文档智能的重要组成部分。由于VRD中的内容和布局的复杂性,结构化文本理解是一项有挑战性的任务。大多数现有的研究将此问题与两个子任务结尾:实体标记和实体链接,这需要整体地了解令牌和段级别的文档的上下文。但是,很少的工作已经关注有效地从不同层次提取结构化数据的解决方案。本文提出了一个名为structext的统一框架,它对于处理两个子任务是灵活的,有效的。具体地,基于变压器,我们引入了一个段令牌对齐的编码器,以处理不同粒度水平的实体标记和实体链接任务。此外,我们设计了一种具有三个自我监督任务的新型预训练策略,以学习更丰富的代表性。 Structext使用现有屏蔽的视觉语言建模任务和新句子长度预测和配对框方向任务,以跨文本,图像和布局结合多模态信息。我们评估我们在分段级别和令牌级别的结构化文本理解的方法,并表明它优于最先进的同行,在Funsd,Srie和Ephoie数据集中具有显着优越的性能。
translated by 谷歌翻译