Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
深图像先验(DIP)是一种最近提出的技术,用于通过将重建图像拟合到未经训练的卷积神经网络的输出中来解决成像反问题。与预处理的前馈神经网络不同,相同的倾角可以概括为任意逆问题,从降级到阶段检索,同时在每个任务下提供竞争性能。DIP的主要缺点是,虽然前馈神经网络可以在单个通行证中重建图像,但DIP必须以大量的计算成本逐渐更新数百到数千个迭代的权重。在这项工作中,我们使用元学习来大规模加速基于倾斜的重建。通过学习浸入权重的适当初始化,我们证明了在一系列逆成像任务中的运行时间有10倍的改善。此外,我们证明了一个经过训练以快速重建面孔的网络也将其推广以重建自然图像贴片。
translated by 谷歌翻译
电线杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型,而无需耗时和乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们基于线的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
translated by 谷歌翻译
知识图(KGS)代表作为三元组的事实已被广泛采用在许多应用中。 LIGHT预测和规则感应等推理任务对于KG的开发很重要。已经提出了知识图形嵌入式(KGES)将kg的实体和kg与持续向量空间的关系进行了建议,以获得这些推理任务,并被证明是有效和强大的。但在实际应用中申请和部署KGE的合理性和可行性尚未探索。在本文中,我们讨论并报告我们在真实域应用程序中部署KGE的经验:电子商务。我们首先为电子商务KG系统提供三个重要的探索者:1)注意推理,推理几个目标关系更为关注而不是全部; 2)解释,提供预测的解释,帮助用户和业务运营商理解为什么预测; 3)可转让规则,生成可重用的规则,以加速将千克部署到新系统。虽然非现有KGE可以满足所有这些DesiderATA,但我们提出了一种新颖的一种,可说明的知识图表注意网络,通过建模三元组之间的相关性而不是纯粹依赖于其头实体,关系和尾部实体嵌入来预测。它可以自动选择预测的注意力三倍,并同时记录它们的贡献,从该解释可以很容易地提供,可以有效地生产可转移规则。我们经验表明,我们的方法能够在我们的电子商务应用程序中满足所有三个DesiderATA,并从实际域应用程序中倾斜于数据集的典型基线。
translated by 谷歌翻译
知识图形嵌入(KGE)是一个流行的kg推理和具有更高尺寸的训练桶的方法,通常优先于它们具有更好的推理能力。然而,高维kges对存储和计算资源构成了巨大挑战,并且不适合资源限制或时间约束应用,这更快和更便宜的推理是必要的。为了解决这个问题,我们提出了Dualde,一种知识蒸馏方法,从预先训练的高维老师KGE建立低维学生KGE。 Dualde考虑教师和学生之间的双重影响。在Dualde中,我们提出了一种软标签评估机制,可自适应地将不同的软标签和硬标签重量分配给不同的三元组,以及改善学生接受教师的两级蒸馏方法。我们的双式足够一般,可以应用于各种桶。实验结果表明,我们的方法可以成功将高维kge的嵌入参数减少7次 - 15次,并将推理速度提高2次 - 6次 - 保持高性能。我们还通过消融研究证明我们的软标签评估机制和两级蒸馏方法的有效性。
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Text-to-SQL semantic parsing is an important NLP task, which greatly facilitates the interaction between users and the database and becomes the key component in many human-computer interaction systems. Much recent progress in text-to-SQL has been driven by large-scale datasets, but most of them are centered on English. In this work, we present MultiSpider, the largest multilingual text-to-SQL dataset which covers seven languages (English, German, French, Spanish, Japanese, Chinese, and Vietnamese). Upon MultiSpider, we further identify the lexical and structural challenges of text-to-SQL (caused by specific language properties and dialect sayings) and their intensity across different languages. Experimental results under three typical settings (zero-shot, monolingual and multilingual) reveal a 6.1% absolute drop in accuracy in non-English languages. Qualitative and quantitative analyses are conducted to understand the reason for the performance drop of each language. Besides the dataset, we also propose a simple schema augmentation framework SAVe (Schema-Augmentation-with-Verification), which significantly boosts the overall performance by about 1.8% and closes the 29.5% performance gap across languages.
translated by 谷歌翻译
In this paper, we present a pure-Python open-source library, called PyPop7, for black-box optimization (BBO). It provides a unified and modular interface for more than 60 versions and variants of different black-box optimization algorithms, particularly population-based optimizers, which can be classified into 12 popular families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC), Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming (EP), Pattern Search (PS), and Random Search (RS). It also provides many examples, interesting tutorials, and full-fledged API documentations. Through this new library, we expect to provide a well-designed platform for benchmarking of optimizers and promote their real-world applications, especially for large-scale BBO. Its source code and documentations are available at https://github.com/Evolutionary-Intelligence/pypop and https://pypop.readthedocs.io/en/latest, respectively.
translated by 谷歌翻译
Achieving multiple genres and long-term choreography sequences from given music is a challenging task, due to the lack of a multi-genre dataset. To tackle this problem,we propose a Multi Art Genre Intelligent Choreography Dataset (MagicDance). The data of MagicDance is captured from professional dancers assisted by motion capture technicians. It has a total of 8 hours 3D motioncapture human dances with paired music, and 16 different dance genres. To the best of our knowledge, MagicDance is the 3D dance dataset with the most genres. In addition, we find that the existing two types of methods (generation-based method and synthesis-based method) can only satisfy one of the diversity and duration, but they can complement to some extent. Based on this observation, we also propose a generation-synthesis choreography network (MagicNet), which cascades a Diffusion-based 3D Diverse Dance fragments Generation Network (3DGNet) and a Genre&Coherent aware Retrieval Module (GCRM). The former can generate various dance fragments from only one music clip. The latter is utilized to select the best dance fragment generated by 3DGNet and switch them into a complete dance according to the genre and coherent matching score. Quantitative and qualitative experiments demonstrate the quality of MagicDance, and the state-of-the-art performance of MagicNet.
translated by 谷歌翻译