近几十年来,Camera-IMU(惯性测量单元)传感器融合已经过度研究。已经提出了具有自校准的运动估计的许多可观察性分析和融合方案。然而,它一直不确定是否在一般运动下观察到相机和IMU内在参数。为了回答这个问题,我们首先证明,对于全球快门Camera-IMU系统,所有内在和外在参数都可以观察到未知的地标。鉴于此,滚动快门(RS)相机的时间偏移和读出时间也证明是可观察到的。接下来,为了验证该分析并解决静止期间结构无轨滤波器的漂移问题,我们开发了一种基于关键帧的滑动窗滤波器(KSWF),用于测量和自校准,它适用于单眼RS摄像机或立体声RS摄像机。虽然关键帧概念广泛用于基于视觉的传感器融合,但对于我们的知识,KSWF是支持自我校准的首先。我们的模拟和实际数据测试验证了,可以使用不同运动的机会主义地标的观察来完全校准相机-IMU系统。实际数据测试确认了先前的典故,即保持状态矢量的地标可以弥补静止漂移,并显示基于关键帧的方案是替代治疗方法。
translated by 谷歌翻译
尽管最近通过剩余网络的代表学习中的自我监督方法取得了进展,但它们仍然对ImageNet分类基准进行了高度的监督学习,限制了它们在性能关键设置中的适用性。在MITROVIC等人的现有理论上洞察中建立2021年,我们提出了RELICV2,其结合了明确的不变性损失,在各种适当构造的数据视图上具有对比的目标。 Relicv2在ImageNet上实现了77.1%的前1个分类准确性,使用线性评估使用Reset50架构和80.6%,具有较大的Reset型号,优于宽边缘以前的最先进的自我监督方法。最值得注意的是,RelicV2是使用一系列标准Reset架构始终如一地始终优先于类似的对比较中的监督基线的第一个表示学习方法。最后,我们表明,尽管使用Reset编码器,Relicv2可与最先进的自我监控视觉变压器相媲美。
translated by 谷歌翻译
联合学习中的一个重要瓶颈是从客户端设备向中央服务器发送模型更新的网络通信成本。我们提出了一种减少这种成本的方法。我们的方法通过适当的通用代码编码量化更新,考虑到其实证分布。因为量化引入错误,所以通过优化平均总比特率和渐变失真的所需权衡来选择量化水平。我们经验证明,尽管是非i.i.d。联邦学习的性质,速率 - 失真边界是跨数据集,优化器,客户端和训练轮的一致,并且在每个设置中,失真可靠地预测模型性能。这允许在许多用例中近乎最佳的显着简单的压缩方案,并且在堆栈溢出下的TOP-K,DRIVE,3LC和QSGD上优于下一词预测基准。
translated by 谷歌翻译
异常模式检测旨在识别与正常偏差明显的情况,并且广泛适用于域。在现有技术中提出了多种异常的检测技术。但是,有一个常见的原则和可扩展的特征选择方法,以便有效发现。通常通过优化预测结果的性能而不是与预期的系统偏差来实现现有的特征选择技术。在本文中,我们提出了一种基于稀疏的自动特征选择(SAFS)框架,其通过特征驱动的大量比率的稀疏性编码系统的结果偏差。 SAF是一种模型 - 无可争议的方法,具有不同发现技术的可用性。 SAF在可在公开的关键护理数据集上验证时维持检测性能超过3倍,计算时间超过3美元。与特征选择的多个基线相比,SAF也会导致卓越的性能。
translated by 谷歌翻译
许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
虽然已知存在强烈相关的抗病毒发动机的组,但目前有限地了解如何或为什么这些相关性所在的理解。使用代表杀毒扫描数据十年的2500万致毒素报告的语料库,我们挑战普遍的智慧,即这些相关性主要来自“一阶”互动,例如杀毒供应商复制领先供应商标签。我们介绍时间秩-1相似性矩阵分解(R1SM-T),以研究这些相关性的起源,并模拟杀毒发动机之间的共识如何随时间变化。我们揭示了一流的相互作用,并不像以前认为杀毒相关的那么多的行为,并且杀毒发动机之间的关系具有高度挥发性。我们提出了根据我们的研究结果需要未来学习和考虑的项目的建议。
translated by 谷歌翻译
由于混淆偏差,测量在观察研究中的治疗效果是挑战性的。当变量影响治疗和结果时发生混淆。传统方法,如倾向评分匹配通过对混凝剂的调节来匹配估计治疗效果。最近的文献介绍了使用机器学习来预测观察研究中的反事实的新方法,然后允许估计治疗效果。然而,这些研究已经应用于真正的治疗效果尚未知道的真实世界数据。本研究旨在通过模拟两个主要场景来研究这种反事实预测方法的有效性:随着和不混淆。每种类型还包括输入和输出数据之间的线性和非线性关系。模拟中的关键项目是我们生成了已知的真正因果效果。线性回归,套索回归和随机林模型用于预测反事实和治疗效果。将这些与真实的治疗效果相比以及幼稚的治疗效果进行比较。结果表明,本机学习方法是否表现良好的最重要因素,是数据中的非线性度。令人惊讶的是,对于非混淆\纺织{和}混淆,机器学习模型都在线性数据集进行了良好。然而,当引入非线性时,模型非常差。因此,在该仿真研究的条件下,即使存在混淆,机器学习方法也在线性的条件下表现良好,但是在存在混淆时,但在介绍非线性时,在此阶段不应该信任。
translated by 谷歌翻译
3D对象检测是安全关键型机器人应用(如自主驾驶)的关键模块。对于这些应用,我们最关心检测如何影响自我代理人的行为和安全性(Egocentric观点)。直观地,当它更有可能干扰自我代理商的运动轨迹时,我们寻求更准确的对象几何描述。然而,基于箱交叉口(IOU)的电流检测指标是以对象为中心的,并且不设计用于捕获物体和自助代理之间的时空关系。为了解决这个问题,我们提出了一种新的EnoCentric测量来评估3D对象检测,即支持距离误差(SDE)。我们基于SDE的分析显示,EPECENTIC检测质量由边界框的粗糙几何形状界定。鉴于SDE将从更准确的几何描述中受益的洞察力,我们建议将物体代表为Amodal轮廓,特别是Amodal星形多边形,并设计简单的模型,椋鸟,预测这种轮廓。我们对大型Waymo公开数据集的实验表明,与IOU相比,SDE更好地反映了检测质量对自我代理人安全的影响;恒星的估计轮廓始终如一地改善最近的3D对象探测器的Enocentric检测质量。
translated by 谷歌翻译
我们介绍了一个非常简单的注意力,以便对序列长度的级别长度和延伸,以便对需要$ o(\ log n)$内存的自我关注的扩展来表示。与经常说的信念相比,自我注意需要$ O(n ^ 2)$内存。虽然时间复杂性仍然是$ O(n ^ 2)$,但是设备存储器而不是计算能力通常是现代加速器上的限制因素。因此,减少注意力的记忆要求允许处理比否则可以是可行的更长的序列。我们为需要$ O(\ sqrt {n})$内存的加速器提供实际实施,是数字稳定的,并且在标准实施的运行时间的几乎没有百分比范围内。我们还演示了如何区分功能,同时剩余内存效率。对于序列长度为16384,自我注意的存储器开销减少59倍,用于推断和32倍以进行分化。
translated by 谷歌翻译
这项工作的目的是检测并自动生成视频中异常事件的高级解释。了解异常事件的原因至关重要,因为所需的响应取决于其性质和严重程度。最近的作品通常使用对象或操作分类器来检测和提供异常事件的标签。然而,这将检测系统限制为有限的已知类别,并防止到未知物体或行为的概括。在这里,我们展示了如何在不使用对象或操作分类器的情况下稳健地检测异组织,但仍然恢复事件背后的高级原因。我们提出以下贡献:(1)一种使用显着性图来解除对象和动作分类器的异常事件解释的方法,(2)显示如何使用新的神经架构来学习视频的离散表示来提高显着图的质量通过预测未来帧和(3)将最先进的异常解释方法击败60 \%在公共基准X-MAN数据集的子集上。
translated by 谷歌翻译