由于其在自主驾驶中的应用,因此基于单眼图像的3D感知已成为一个活跃的研究领域。与基于激光雷达的技术相比,单眼3D感知(包括检测和跟踪)的方法通常会产生较低的性能。通过系统的分析,我们确定了每个对象深度估计精度是界限性能的主要因素。在这种观察过程中,我们提出了一种多级融合方法,该方法将不同的表示(RGB和伪LIDAR)和跨多个对象(Tracklets)的时间信息结合在一起,以增强对目标深度估计。我们提出的融合方法实现了Waymo打开数据集,KITTI检测数据集和Kitti MOT数据集的每个对象深度估计的最新性能。我们进一步证明,通过简单地用融合增强的深度替换估计的深度,我们可以在单眼3D感知任务(包括检测和跟踪)方面取得重大改进。
translated by 谷歌翻译
3D对象检测是安全关键型机器人应用(如自主驾驶)的关键模块。对于这些应用,我们最关心检测如何影响自我代理人的行为和安全性(Egocentric观点)。直观地,当它更有可能干扰自我代理商的运动轨迹时,我们寻求更准确的对象几何描述。然而,基于箱交叉口(IOU)的电流检测指标是以对象为中心的,并且不设计用于捕获物体和自助代理之间的时空关系。为了解决这个问题,我们提出了一种新的EnoCentric测量来评估3D对象检测,即支持距离误差(SDE)。我们基于SDE的分析显示,EPECENTIC检测质量由边界框的粗糙几何形状界定。鉴于SDE将从更准确的几何描述中受益的洞察力,我们建议将物体代表为Amodal轮廓,特别是Amodal星形多边形,并设计简单的模型,椋鸟,预测这种轮廓。我们对大型Waymo公开数据集的实验表明,与IOU相比,SDE更好地反映了检测质量对自我代理人安全的影响;恒星的估计轮廓始终如一地改善最近的3D对象探测器的Enocentric检测质量。
translated by 谷歌翻译
通常通过过去的选择来告知机器学习中的评估,例如要使用哪些数据集或指标。该标准化可以使用排行榜对平等基础进行比较,但是随着出现更好的替代方案,评估选择变得不佳。这个问题在自然语言生成中尤其相关,该语言需要不断改善的数据集,指标和人类评估以提出确定性的主张。为了使遵循最佳模型评估实践更加容易,我们介绍了GEMV2。新版本的一代,评估和指标基准为数据集,模型和指标开发人员提供了模块化基础架构,以使彼此受益。GEMV2支持40种记录的数据集中51种语言。所有数据集的模型都可以在线评估,我们的交互式数据卡创建和渲染工具使得在Living Benchmark中添加新数据集变得更加容易。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
Dexterous操作是机器人中的一个具有挑战性和重要问题。虽然数据驱动方法是一个有希望的方法,但由于流行方法的样本效率低,当前基准测试需要模拟或广泛的工程支持。我们为Trifinger系统提供基准,这是一个开源机器人平台,用于灵巧操纵和2020年真正的机器人挑战的重点。在挑战中取得成功的基准方法可以一般被描述为结构性政策,因为它们结合了经典机器人和现代政策优化的元素。这种诱导偏差的包含促进样品效率,可解释性,可靠性和高性能。该基准测试的关键方面是验证跨模拟和实际系统的基线,对每个解决方案的核心特征进行彻底消融研究,以及作为操纵基准的挑战的回顾性分析。本工作的代码和演示视频可以在我们的网站上找到(https://sites.google.com/view/benchmark-rrc)。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
计算机辅助方法为诊断和预测脑疾病显示了附加的价值,因此可以支持临床护理和治疗计划中的决策。本章将洞悉方法的类型,其工作,输入数据(例如认知测试,成像和遗传数据)及其提供的输出类型。我们将专注于诊断的特定用例,即估计患者的当前“状况”,例如痴呆症的早期检测和诊断,对脑肿瘤的鉴别诊断以及中风的决策。关于预测,即对患者的未来“状况”的估计,我们将缩小用例,例如预测多发性硬化症中的疾病病程,并预测脑癌治疗后患者的结局。此外,根据这些用例,我们将评估当前的最新方法,并强调当前对这些方法进行基准测试的努力以及其中的开放科学的重要性。最后,我们评估了计算机辅助方法的当前临床影响,并讨论了增加临床影响所需的下一步。
translated by 谷歌翻译
域的概括通常需要来自多个源域的数据才能进行模型学习。但是,这种强大的假设可能并不总是在实践中成立,尤其是在数据共享高度关注,有时由于隐私问题而高度刺激的医学领域。本文研究了重要但具有挑战性的单个领域概括问题,其中在最坏情况下仅具有一个源域,可以直接概括到不同看不见的目标域。我们提出了一种在医学图像分割中解决此问题的新方法,该方法可以提取并集成了跨域不变的分割的语义形状的先验信息,即使是从单个域数据中也可以很好地捕捉,以促进分布偏移下的分割。此外,进一步设计了具有双偶然性正则化的测试时间适应策略,以促进每个看不见的域下这些形状先验的动态融合,以提高模型的通用性。对两个医学图像分割任务进行的广泛实验证明了我们在各种看不见的领域中的方法的一致改进,以及在最坏情况下,它比最先进的方法相比,它优于最先进的方法。
translated by 谷歌翻译
由于问题过度问题,大多数现有的图形神经网络只能使用其固有有限的聚合层捕获有限的依赖性。为了克服这一限制,我们提出了一种新型的图形卷积,称为图形隐式非线性扩散(GIND),该卷积隐含地可以访问邻居的无限啤酒花,同时具有非线性扩散的自适应聚集特征,以防止过度张开。值得注意的是,我们表明,学到的表示形式可以正式化为显式凸优化目标的最小化器。有了这个属性,我们可以从优化的角度从理论上表征GIND的平衡。更有趣的是,我们可以通过修改相应的优化目标来诱导新的结构变体。具体而言,我们可以将先前的特性嵌入到平衡中,并引入跳过连接以促进训练稳定性。广泛的实验表明,GIND擅长捕获长期依赖性,并且在具有非线性扩散的同粒细胞和异性图上表现良好。此外,我们表明,我们模型的优化引起的变体可以提高性能并提高训练稳定性和效率。结果,我们的GIND在节点级别和图形级任务上都获得了重大改进。
translated by 谷歌翻译