最近,已探索了一系列算法,用于GaN压缩,旨在在部署资源受限的边缘设备上的GAN时减少巨大的计算开销和内存使用。然而,大多数现有的GaN压缩工作仅重点介绍如何压缩发电机,而未能考虑鉴别者。在这项工作中,我们重新审视鉴别者在GaN压缩中的作用和设计一种用于GAN压缩的新型发电机 - 鉴别器协作压缩方案,称为GCC。在GCC中,选择性激活鉴别器根据局部容量约束和全局协调约束自动选择和激活卷积通道,这有助于在对策训练期间与轻质发电机保持纳什平衡,避免模式塌陷。原始发电机和鉴别器也从头开始优化,作为教师模型,逐步优化修剪的发生器和选择性激活鉴别器。一种新的在线协同蒸馏方案旨在充分利用教师发生器和鉴别器的中间特征,以进一步提高轻质发电机的性能。对各种GAN的一代任务的广泛实验证明了GCC的有效性和泛化。其中,GCC有助于降低80%的计算成本,同时在图像转换任务中保持相当的性能。我们的代码和模型可在https://github.com/sjleo/gcc上使用。
translated by 谷歌翻译
在恢复低分辨率灰度图像的实际应用中,我们通常需要为目标设备运行三个单独的图像着色,超分辨率和Dows采样操作。但是,该管道对于独立进程是冗余的并且低效,并且可以共享一些内部特征。因此,我们提出了一种有效的范例来执行{s} {s} {c} olorization和{s} Uper分辨率(SCS),并提出了端到端的SCSNet来实现这一目标。该方法由两部分组成:用于学习颜色信息的彩色分支,用于采用所提出的即插即用\ EMPH {金字塔阀跨关注}(PVCATTN)模块来聚合源和参考图像之间的特征映射;和超分辨率分支集成颜色和纹理信息以预测使用设计的\ emph {连续像素映射}(CPM)模块的目标图像来预测连续放大率的高分辨率图像。此外,我们的SCSNet支持对实际应用更灵活的自动和参照模式。丰富的实验证明了我们通过最先进的方法生成真实图像的方法的优越性,例如,平均降低了1.8 $ \ Depararrow $和5.1 $ \ Downarrow $相比,与自动和参照模式的最佳分数相比,分别在拥有更少的参数(超过$ \ \倍$ 2 $ \ dovearrow $)和更快的运行速度(超过$ \ times $ 3 $ \ Uprarow $)。
translated by 谷歌翻译
在Crypto 2019中,Gohr进行了开创性的尝试,并成功地向NSA块密码SPECK32 / 64进行了深度学习,实现了比纯差分区分的更高的精度。通过其本质,数据中的挖掘有效特征在数据驱动的深度学习中起着至关重要的作用。在本文中,除了从密文对的训练数据中考虑信息的完整性,还考虑了关于差分密码分析结构的域知识也被认为是深度学习的培训过程,提高性能。此外,基于SAT / SMT求解器,我们发现其他高概率兼容差分特性,与以前的工作相比有效地提高了性能。我们建立针对西蒙和Simeck的神经区别师(NDS)和相关关键的神经区别SIMON32 / 64的ND和RKND分别达到11-,11轮,精度分别为59.55%和97.90%。对于Simon64 / 128,ND在13轮达到60.32%的准确性,而RKND为95.49%。对于SIMECK32 / 64,获得11-,14轮的ND和RKND,分别达到63.32%和87.06%的准确度。我们为SIMECK64 / 128建立了17轮ND和21轮RKND,精度分别为64.24%和62.96%。目前,这些是Simon32 / 64,Simon64 / 128,Simeck32 / 64和Simeck64 / 128的更高精度的最长(相关关键)的神经区别。
translated by 谷歌翻译
随着深度学习技术扩展到现实世界推荐任务,已经开发出许多深度神经网络的协作滤波(CF)模型基于各种神经结构,例如多层的神经架构将用户项目交互项目投影到潜伏特征空间中Perceptron,自动编码器和图形神经网络。然而,大多数现有的协作过滤系统不充分设计用于处理缺失的数据。特别是,为了在训练阶段注入负信号,这些解决方案很大程度上依赖于未观察到的用户项交互,并且简单地将它们视为负实例,这带来了推荐性能下降。为了解决问题,我们开发了一个协作反射增强的AutoEncoder网络(Cranet),它能够探索从观察到和未观察的用户项交互的可转移知识。 Cranet的网络架构由具有反射接收器网络的集成结构和信息融合自动统计器模块形成,其推荐框架具有在互动和非互动项目上编码隐式用户的成对偏好的能力。另外,基于参数正规化的捆绑重量方案旨在对两级颅骨模型进行鲁棒联合训练。我们终于在对应于两个推荐任务的四个不同基准数据集上进行了实验验证了Cranet,以表明,与各种最先进的推荐技术相比,脱叠用户项交互的负信号提高了性能。我们的源代码可在https://github.com/akaxlh/cranet上获得。
translated by 谷歌翻译
在本文中,我们发现两个因素抑制POMS从实现高感感性质量:1)方向优化(COO)问题和2)模型的低频趋势。首先,POMS倾向于生成SR图像,其位置空间中的位置最接近所有潜在的高分辨率(HR)图像的分配中心,导致这种POMS失去高频细节。其次,图像的90美元\%$区域由低频信号组成;相比之下,人类感知依赖于图像的高频细节。然而,POMS应用相同的计算来处理不同频率区域,使POM倾向于恢复低频区域。基于这两个因素,我们提出了一种细节,通过组合高频增强模块和空间对比学习模块来降低COO问题的影响和低频趋势来提高对比损失(DECHROSTS)。实验结果表明,在若干常规SR模型上施加DROCKS时的效率和有效性。例如,在EDSR中,与基于GAN的方法相比,我们所提出的方法与视觉质量微妙降级的基于GAN的方法实现了3.60美元。此外,我们的最终结果表明,与最先进的方法相比,配备了我们的DECHROSS的SR网络更具现实和视觉上令人愉悦的纹理。 %拟议方法的源代码包含在补充材料中,并将在将来公开。
translated by 谷歌翻译
预先接受的语言模型实现了最先进的导致各种自然语言处理(NLP)任务。 GPT-3表明,缩放预先训练的语言模型可以进一步利用它们的巨大潜力。最近提出了一个名为Ernie 3.0的统一框架,以预先培训大型知识增强型号,并培训了具有10亿参数的模型。 Ernie 3.0在各种NLP任务上表现出最先进的模型。为了探讨缩放的表现,我们培养了百卢比的3.0泰坦参数型号,在PaddlePaddle平台上有高达260亿参数的泰坦。此外,我们设计了一种自我监督的对抗性损失和可控语言建模损失,以使ERNIE 3.0 TITAN产生可信和可控的文本。为了减少计算开销和碳排放,我们向Ernie 3.0泰坦提出了一个在线蒸馏框架,教师模型将同时教授学生和培训。埃塞尼3.0泰坦是迄今为止最大的中国密集预训练模型。经验结果表明,Ernie 3.0泰坦在68个NLP数据集中优于最先进的模型。
translated by 谷歌翻译
一滴联合学习(FL)最近被出现为有希望的方法,允许中央服务器在单个通信中学习模型。尽管通信成本低,但现有的一次性的单次方法大多是不切实际或面临的固有限制,例如,需要公共数据集,客户的型号是同质的,需要上传其他数据/型号信息。为了克服这些问题,我们提出了一种更实用的无数据方法,名为FEDSYN的一枪框架,具有异质性。我们的Fedsyn通过数据生成阶段和模型蒸馏阶段列出全球模型。据我们所知,FEDSYN是由于以下优点,FEDSYN可以实际应用于各种实际应用程序的方法:(1)FEDSYN不需要在客户端之间传输的其他信息(模型参数除外)服务器; (2)FEDSYN不需要任何用于培训的辅助数据集; (3)FEDSYN是第一个考虑FL中的模型和统计异质性,即客户的数据是非IID,不同的客户端可能具有不同的模型架构。关于各种现实世界数据集的实验表明了我们的Fedsyn的优越性。例如,当数据是非IID时,FEDSYN在CIFAR10数据集中优于CEFAR10数据集的最佳基线方法FED-ADI的最佳基准方法。
translated by 谷歌翻译
BERT型结构导致了视觉语言预培训的革命,并在众多视觉语言下游任务上实现最先进的结果。现有解决方案主要用掩码令牌的多模态输入大小化,以触发基于掩码的代理预训练任务(例如,屏蔽语言建模和屏蔽对象/帧预测)。在这项工作中,我们认为这种掩码的输入将不可避免地引入跨模型匹配代理任务的噪声,从而留下探索的固有视觉语言协会。作为替代方案,我们推导出一种特定形式的用于视频预培训的跨模型代理目标,即对比跨模型匹配和去噪(Coco)。通过将蒙版帧/单词序列视为主要取消屏蔽的噪声增强,通过同时追求掩蔽和未掩蔽输入之间的模态匹配和模态匹配和模态的帧间匹配和模态的帧内偏离,通过对比方式来加强视频协会。我们的CoCo代理目标可以进一步集成到用于视频预训练的任何BERT型编码器解码器结构中,被命名为对比跨模态伯特(Coco-Bert)。我们在电视数据集上预先火车Coco-Bert以及新收集的大型GIF视频数据集(动作)。通过广泛的下游任务(例如,跨模型检索,视频问题回答和视频标题)进行广泛的实验,我们证明了Coco-Bert作为预训练的结构的优越性。
translated by 谷歌翻译
为了支持各种任务和处理不同的飞行环境,无人机控制程序通常提供可配置的控制参数。但是,这种灵活性引入了漏洞。最近已识别出一种称为范围规范错误的这种漏洞。该漏洞起源于即使每个单独的参数在推荐值范围内接收值,也可能影响无人机物理稳定性的某些组合。在本文中,我们开发了一种新颖的学习引导的搜索系统来寻找这样的组合,即我们称之为不正确的配置。我们的系统应用了Metaheuristic Search算法突变配置,以检测将无人机驱动到不稳定物理状态的值的配置参数。为了引导突变,我们的系统利用机器学习预测因子作为健身评估。最后,通过利用多目标优化,我们的系统基于突变搜索结果返回可行的范围。由于在我们的系统中,突变由预测器引导,评估参数配置不需要现实/仿真执行。因此,我们的系统支持全面但有效地检测不正确的配置。我们对我们的系统进行了实验评估。评估结果表明,该系统成功地报告了可能不正确的配置,其中85%以上导致实际不稳定的物理状态。
translated by 谷歌翻译
大多数用于点击速率(CTR)预测的现有方法取决于超薄的假设,即点击概率是观察概率和相关概率的乘积。但是,由于这两个概率之间存在复杂相互作用,因此这些方法不能应用于其他场景,例如,查询自动完成(QAC)和路由推荐。我们提出了一般的脱结框架,而无需简化变量之间的关系,可以处理CTR预测中的所有场景。仿真实验表明:在最简单的情况下,我们的方法与最先进的方法保持了类似的AUC;在其他情况下,与现有方法相比,我们的方法实现了相当大的改进。同时,在网上实验中,框架也始终如一地提高了显着的改进。
translated by 谷歌翻译