本文提出了第二版的头部和颈部肿瘤(Hecktor)挑战的概述,作为第24届医学图像计算和计算机辅助干预(Miccai)2021的卫星活动。挑战由三个任务组成与患有头颈癌(H&N)的患者的PET / CT图像的自动分析有关,专注于oropharynx地区。任务1是FDG-PET / CT图像中H&N主肿瘤肿瘤体积(GTVT)的自动分割。任务2是来自同一FDG-PET / CT的进展自由生存(PFS)的自动预测。最后,任务3与任务2的任务2与参与者提供的地面真理GTVT注释相同。这些数据从六个中心收集,总共325个图像,分为224个培训和101个测试用例。通过103个注册团队和448个结果提交的重要参与,突出了对挑战的兴趣。在第一任务中获得0.7591的骰子相似度系数(DSC),分别在任务2和3中的0.7196和0.6978的一致性指数(C-Index)。在所有任务中,发现这种方法的简单性是确保泛化性能的关键。 PFS预测性能在任务2和3中的比较表明,提供GTVT轮廓对于实现最佳结果,这表明可以使用完全自动方法。这可能避免了对GTVT轮廓的需求,用于可重复和大规模的辐射瘤研究的开头途径,包括千元潜在的受试者。
translated by 谷歌翻译
我们提出了对形式文件的任意查询的价值检索,以减少处理表格的人力努力。与以前的方法不同,仅解决一个固定的字段项,我们的方法基于对表单的布局和语义的理解,预测任意查询的目标值。为了进一步提高模型性能,我们提出了一种简单的文档语言建模(SimpleDLM)策略,以提高对大型模型预培训的文档理解。实验结果表明,我们的方法显着优于我们的基线,而SimpleDLM进一步提高了我们的价值检索的性能约为17 \%F1分数与最先进的预训练方法相比。代码将公开可用。
translated by 谷歌翻译
建议制度,依靠历史观察数据来模仿用户和物品之间的复杂关系,取得了巨大的成功,在现实世界中取得了巨大的成功。选择偏见是现有的现有观测数据基于方法的最重要问题之一,其实际上是由多种类型的不观察室的暴露策略引起的(例如促销和假期效应)。虽然已经提出了各种方法来解决这个问题,但它们主要依赖于隐含的脱叠技术,但没有明确建立未观察的曝光策略。通过明确重建曝光策略(简称休息),我们将推荐问题正式化为反事实推理,并提出了脱叠的社会推荐方法。在休息时,我们假设项目的曝光由潜在曝光策略,用户和项目控制。基于上述生成过程,首先通过识别分析提供我们方法的理论保证。其次,在社交网络和项目的帮助下,我们采用了变分自动编码器来重建潜在的曝光策略。第三,我们通过利用回收的曝光策略制定基于反事实推理的建议算法。四个现实世界数据集的实验,包括三个已发布的数据集和一个私人微信官方帐户数据集,展示了几种最先进的方法的显着改进。
translated by 谷歌翻译
不观察到的混淆是观测数据的因果效应估计的主要障碍。仪器变量(IVS)广泛用于存在潜在混淆时的因果效应估计。利用标准IV方法,当给定的IV有效时,可以获得无偏估计,但标准IV的有效性要求是严格和不可能的。已经提出了通过调节一组观察变量(称为条件IV的调节装置)来放松标准IV的要求。然而,用于查找条件IV的调节集的标准需要完整的因果结构知识或指向的非循环图(DAG),其代表观察到和未观察的变量的因果关系。这使得无法发现直接从数据设置的调节。在本文中,通过利用潜在变量的因果推断中的最大祖先图(MAGS),我们提出了一种新型的MAG中的IV,祖先IV,并开发了支持给定祖传的调节装置的数据驱动的发现iv在mag。基于该理论,我们在MAG和观测数据中开发了一种与祖先IV的非偏见因果效应估计的算法。与现有IV方法相比,对合成和实际数据集的广泛实验表明了算法的性能。
translated by 谷歌翻译
据报道,传感器嵌入式手套系统需要仔细,耗时和精确的校准,以获得一致的可用数据。我们已经开发出低成本,基于Flex传感器的智能手套系统,可能是对数据手套的共同限制的弹性。该系统利用Arduino基础的微控制器以及每个手指上的单个柔性传感器。从Arduinos模拟到数字转换器的反馈可用于推断对象尺寸特性,每个单独的手指的反应相对于掌握物体的尺寸和形状不同。在这项工作中,我们在统计上区分了不同的半径的统计差异的静止物体,无论手套用户引入的变化如何。使用我们的传感器嵌入式手套系统,我们根据智能手套的每根手指的触觉传感器响应探索了物体分类的实用性。从五个手指平均柔性传感器读数中的每一个计算平均值的估计标准误差。与文献一致,我们发现物体形状,尺寸和柔性传感器读数之间存在系统的依赖性。当比较相同半径的球形和圆柱形物体时,从至少一个手指输出的传感器从至少一个手指输出。当传感各种尺寸的球体和气缸时,所有五个手指对每个形状具有明显不同的反应。我们认为,我们的发现可以用于机器学习模型,用于实时对象识别。
translated by 谷歌翻译
少量对象检测(FSOD)是计算机视觉中快速生长的领域。它包括查找给定的一组类的所有出现,只有每个类的少数注释的示例。已经提出了许多方法来解决这一挑战,其中大部分是基于注意机制。然而,各种经典对象检测框架和培训策略使方法之间的性能比较困难。特别是对于基于关注的FSOD方法,比较不同关注机制对性能的影响是费力的。本文旨在填补这种缺点。为此,提出了一种灵活的框架,以允许实施文献中可用的大部分注意技术。要正确介绍这样的框架,首先提供了对现有FSOD方法的详细审查。然后在框架内重新实现一些不同的关注机制,并与固定的所有其他参数进行比较。
translated by 谷歌翻译
异常模式检测旨在识别与正常偏差明显的情况,并且广泛适用于域。在现有技术中提出了多种异常的检测技术。但是,有一个常见的原则和可扩展的特征选择方法,以便有效发现。通常通过优化预测结果的性能而不是与预期的系统偏差来实现现有的特征选择技术。在本文中,我们提出了一种基于稀疏的自动特征选择(SAFS)框架,其通过特征驱动的大量比率的稀疏性编码系统的结果偏差。 SAF是一种模型 - 无可争议的方法,具有不同发现技术的可用性。 SAF在可在公开的关键护理数据集上验证时维持检测性能超过3倍,计算时间超过3美元。与特征选择的多个基线相比,SAF也会导致卓越的性能。
translated by 谷歌翻译
骨质疏松症是一种常见的慢性代谢骨病,通常是由于对骨矿物密度(BMD)检查有限的有限获得而被诊断和妥善治疗,例如。通过双能X射线吸收测定法(DXA)。在本文中,我们提出了一种方法来预测来自胸X射线(CXR)的BMD,最常见的和低成本的医学成像考试之一。我们的方法首先自动检测来自CXR的局部和全球骨骼结构的感兴趣区域(ROI)。然后,开发了一种具有变压器编码器的多ROI深模型,以利用胸部X射线图像中的本地和全局信息以进行准确的BMD估计。我们的方法在13719 CXR患者病例中进行评估,并通过金标准DXA测量其实际BMD评分。该模型预测的BMD与地面真理(Pearson相关系数0.889腰腰1)具有强烈的相关性。当施用骨质疏松症筛查时,它实现了高分类性能(腰腰1的AUC 0.963)。作为现场使用CXR扫描预测BMD的第一次努力,所提出的算法在早期骨质疏松症筛查和公共卫生促进中具有很强的潜力。
translated by 谷歌翻译
零拍学习(ZSL)旨在识别培训时间没有可视化样本的类。要解决此问题,可以依赖每个类的语义描述。典型的ZSL模型学习所看到的类和相应的语义描述的视觉样本之间的映射,以便在测试时间的看不见的类上对此进行操作。最先进的方法依赖于从类的原型合成视觉特征的生成模型,从而可以以监督方式学习分类器。但是,这些方法通常偏向于所看到的类,其视觉实例是唯一可以与给定类原型匹配的类。我们提出了一种正规化方法,可以应用于任何条件生成的ZSL方法,只能利用语义类原型。它学会综合判断特征,以便在训练时间不可用的可能语义描述,即看不见的特征。在文献中常用的四个数据集中评估该方法,其在文献中通常用于感应和转换设置,结果对杠杆或上述现有方法的结果。
translated by 谷歌翻译
虽然深度神经网络在分类任务方面取得了很大的表现,但最近的研究表明,训练有素的网络可以通过添加微妙的噪音来欺骗。本文介绍了一种新方法,通过将恢复过程应用于自然训练的分类器的顶部来提高神经网络鲁棒性。在这种方法中,图像将被一些重要操作员故意破坏,然后在通过分类器之前恢复。Sargan - 生成对抗网络(GaN)的延伸能够去噪雷达信号。本文将显示Sargan还可以通过去除对抗效应来恢复损坏的图像。我们的结果表明,这种方法确实提高了自然培训的网络的性能。
translated by 谷歌翻译