本文提出了一个贝叶斯框架,用于构建非线性,简约的浅层模型,用于多任务回归。提出的框架依赖于这样一个事实,即随机傅立叶特征(RFF)可以通过极端学习机器将RBF内核近似,其隐藏层由RFF形成。主要思想是将同一模型的两个双重视图结合在单个贝叶斯公式下,将稀疏的贝叶斯极限学习机器扩展到多任务问题。从内核方法的角度来看,提出的公式有助于通过RBF内核参数引入先前的域知识。从极端的学习机的角度来看,新的配方有助于控制过度拟合并实现简约的总体模型(服务每个任务的模型共享联合贝叶斯优化中选择的相同的RFF集合)。实验结果表明,在同一框架内将内核方法和极端学习机器的优势相结合可能会导致这两个范式中的每一个范式独立地取得的性能显着改善。
translated by 谷歌翻译
现实世界数据库很复杂,它们通常会呈现冗余,并在同一数据的异质和多个表示之间共享相关性。因此,在视图之间利用和解开共享信息至关重要。为此,最近的研究经常将所有观点融合到共享的非线性复杂潜在空间中,但它们失去了解释性。为了克服这一局限性,我们在这里提出了一种新的方法,将多个变异自动编码器(VAE)结构与因子分析潜在空间(FA-VAE)相结合。具体而言,我们使用VAE在连续的潜在空间中学习每个异质观点的私人表示。然后,我们通过使用线性投影矩阵将每个私有变量投影到低维的潜在空间来对共享潜在空间进行建模。因此,我们在私人信息和共享信息之间创建了可解释的层次依赖性。这样,新型模型可以同时:(i)从多种异质观点中学习,(ii)获得可解释的层次共享空间,以及(iii)在生成模型之间执行传输学习。
translated by 谷歌翻译
机器学习技术通常应用于痴呆症预测缺乏其能力,共同学习多个任务,处理时间相关的异构数据和缺失值。在本文中,我们建议使用最近呈现的SShiba模型提出了一个框架,用于在缺失值的纵向数据上联合学习不同的任务。该方法使用贝叶斯变分推理来赋予缺失值并组合多个视图的信息。这样,我们可以将不同的数据视图与共同的潜在空间中的不同时间点相结合,并在同时建模和预测若干输出变量的同时学习每个时间点之间的关系。我们应用此模型以预测痴呆症中的诊断,心室体积和临床评分。结果表明,SSHIBA能够学习缺失值的良好归因,同时预测三个不同任务的同时表现出基线。
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
对于要表示为歧管上点的2D对象的图像和形状等数据结构,这是常见的。从此类数据中产生消毒的差异私有估计的机制的实用性与它与空间的基础结构和几何形状的兼容性密切相关。特别是,如最近所示,拉普拉斯机理在正面弯曲的歧管上的效用(例如肯德尔的2D形状空间)受到曲率的显着影响。关注歧管上的点样品样本的Fr \'echet平均值的问题,我们利用均值的表征为由平方距离总和组成的目标函数的最小化器,并开发了k-norm梯度机制在Riemannian歧管上,有利于产生接近目标函数零的梯度的值。对于正面弯曲的歧管的情况,我们描述了如何使用平方距离函数的梯度比Laplace机制更好地控制灵敏度,并在数值上在callosa的形状数据集上进行数值演示。还提出了机理在球体上的实用性的进一步说明以及对称正定矩阵的多种示意图。
translated by 谷歌翻译
本文通过一些机器人解决了放弃无数逃避者的问题。目的是在避免逃脱的同时,将所有逃避者引导到所需的跟踪参考。由于高度复杂的排斥逃避者的动态和无法控制的状态,问题非常具有挑战性。我们提出了一个基于隐式控制和新型动态分配策略的解决方案,以选择要直接控制的逃避者。前者是一种通用技术,即使在高度复杂的输入 - 非纳法丁动力学中,也可以明确计算输入。后者建立在受Voronoi Tessellation问题启发的凸形船体动态群集上。两者的结合都可以选择最佳的逃避者直接控制,而其他逃避者则通过利用它们之间的排斥相互作用而间接控制。模拟表明,通过一些牧群可以在复杂的模式中成为大量群。
translated by 谷歌翻译
本文介绍了狐猴,这是一种从合作任务演示中学习可扩展的多机器人控制政策的算法。我们建议对多机器人系统的港口港口描述,以利用互连系统中的通用物理约束并实现闭环稳定性。我们使用结合自我注意机制和神经普通微分方程的体系结构代表多机器人控制策略。前者在机器人团队中处理时变的沟通,而后者则尊重连续的机器人动力学。我们的表示是通过施工分配的,使学习的控制政策能够部署在不同大小的机器人团队中。我们证明,狐猴可以从多机导航和羊群任务的演示中学习互动和合作行为。
translated by 谷歌翻译
批处理过程显示了几种可变性来源,从原材料的特性到制造过程中不同事件期间变化的初始和不断发展的条件。在本章中,我们将用一个工业示例说明如何使用机器学习来减少这种明显的数据,同时维护过程工程师的相关信息。将提出两个常见的用例:1)自动分析以快速找到批处理过程中的相关性,以及2)轨迹分析以监视和识别异常批次,从而导致过程控制改进。
translated by 谷歌翻译
我们通过引入一个评估训练和测试数据中看到的边缘位移分布(边缘的定向距离)之间的差异来为NLP中解析性能的讨论做出贡献。我们假设该测量将与跨树库的解析性能中观察到的差异有关。我们通过建立先前的工作来激发这种激励,然后尝试通过使用多种统计方法来伪造这一假设。我们确定即使控制潜在的协变量,这种测量和解析性能之间也存在统计相关性。然后,我们使用它来建立一种抽样技术,从而为我们提供对抗性和互补的分裂。这给出了给定树库来代替新鲜采样数据的解析系统的下层和上限。从广义上讲,这里提出的方法可以作为NLP中基于相关的探索工作的参考。
translated by 谷歌翻译