在本文中,我们考虑“最短的超人问题”(SSP)或“最短常见的超级测试问题”(SCS)。问题如下。对于正整数$ N $,给出了一系列n字符串$ s =(s ^ 1,\ dots,s ^ n)$。我们应该构建最短的字符串$ t $(我们称之为IT Superstring),它包含来自给定序列的每个字符串作为子字符串。该问题与序列组装方法相关联,用于从小碎片重建长DNA序列。我们呈现了一个运行时间$ o ^ *(1.728 ^ n)$的量子算法。$ O ^ * $表示法不考虑$ n $的多项式和$ t $的长度。
translated by 谷歌翻译
我们寻求基于8,380临床验证样品的咳嗽声,评估Covid-19的快速初级筛查工具的检测性能,从8,380临床验证的样品进行实验室分子测试(2,339 Covid-19阳性和6,041个Covid-19负面)。根据患者的定量RT-PCR(QRT-PCR)分析,循环阈值和淋巴细胞计数,根据结果和严重程度临床标记样品。我们所提出的通用方法是一种基于经验模式分解(EMD)的算法,其随后基于音频特征的张量和具有称为Deplecough的卷积层的深层人工神经网络分类器的分类。基于张量尺寸的数量,即DepeCough2D和DeepCOUGH3D,两种不同版本的深度。这些方法已部署在多平台概念验证Web应用程序CoughDetect中以匿名管理此测试。 Covid-19识别结果率达到了98.800.83%,敏感性为96.431.85%的有前途的AUC(面积),特异性为96.201.74%,81.08%5.05%AUC,用于识别三个严重程度。我们提出的Web工具和支持稳健,快速,需要Covid-19的需求识别的基础算法有助于快速检测感染。我们认为,它有可能大大妨碍世界各地的Covid-19大流行。
translated by 谷歌翻译
我们呈现SeveryGan,一种能够从单个输入示例自动生成砖纹理映射的方法。与大多数现有方法相比,专注于解决合成问题,我们的工作同时解决问题,合成和涤纶性。我们的关键思想是认识到,通过越野落扩展技术训练的生成网络内的潜伏空间产生具有在接缝交叉点的连续性的输出,然后可以通过裁剪中心区域进入彩色图像。由于不是潜在空间的每个值都有有效的来产生高质量的输出,因此我们利用鉴别者作为能够在采样过程中识别无伪纹理的感知误差度量。此外,与之前的深度纹理合成的工作相比,我们的模型设计和优化,以便使用多层纹理表示,使由多个地图组成的纹理,例如Albedo,法线等。我们广泛地测试网络的设计选择架构,丢失功能和采样参数。我们在定性和定量上展示我们的方法优于以前的方法和适用于不同类型的纹理。
translated by 谷歌翻译
机器学习技术通常应用于痴呆症预测缺乏其能力,共同学习多个任务,处理时间相关的异构数据和缺失值。在本文中,我们建议使用最近呈现的SShiba模型提出了一个框架,用于在缺失值的纵向数据上联合学习不同的任务。该方法使用贝叶斯变分推理来赋予缺失值并组合多个视图的信息。这样,我们可以将不同的数据视图与共同的潜在空间中的不同时间点相结合,并在同时建模和预测若干输出变量的同时学习每个时间点之间的关系。我们应用此模型以预测痴呆症中的诊断,心室体积和临床评分。结果表明,SSHIBA能够学习缺失值的良好归因,同时预测三个不同任务的同时表现出基线。
translated by 谷歌翻译
布局分析(LA)阶段对光学音乐识别(OMR)系统的正确性能至关重要。它标识了感兴趣的区域,例如Staves或歌词,然后必须处理,以便转录它们的内容。尽管存在基于深度学习的现代方法,但在不同模型的精度,它们对不同领域的概括或更重要的是,它们尚未开展对OMR的详尽研究,或者更重要的是,它们对后续阶段的影响管道。这项工作侧重于通过对不同神经结构,音乐文档类型和评估方案的实验研究填补文献中的这种差距。培训数据的需求也导致了一种新的半合成数据生成技术的提议,这使得LA方法在真实情况下能够有效适用性。我们的结果表明:(i)该模型的选择及其性能对于整个转录过程至关重要; (ii)(ii)常用于评估LA阶段的指标并不总是与OMR系统的最终性能相关,并且(iii)所提出的数据生成技术使最先进的结果能够以有限的限制实现标记数据集。
translated by 谷歌翻译
移动屏幕的布局是UI设计研究和对屏幕的语义理解的关键数据源。但是,现有数据集中的UI布局通常是嘈杂的,具有与其视觉表示的不匹配,或者由难以分析和模型的通用或应用特定类型组成。在本文中,我们提出了使用深度学习方法的粘土管道,用于去噪UI布局,允许我们在比例下自动改进现有的移动UI布局数据集。我们的管道采用屏幕截图和原始UI布局,通过删除不正确的节点并向每个节点分配语义有意义的类型来注释原始布局。为了实验我们的数据清洁管道,我们根据来自Rico的截图和原始布局,创建59,555个人注释的屏幕布局的粘土数据集,该网站上是一个公共移动UI语料库。我们的深度模型可实现高精度,F1分数为82.7%,用于检测没有有效的视觉表示的布局对象,85.9%用于识别对象类型,这显着优于启发式基线。我们的工作为创建大规模高质量的UI布局数据集提供了用于数据驱动的移动UI研究的基础,并减少了手动标签的需要,这些努力非常昂贵。
translated by 谷歌翻译
新磁共振(MR)成像方式可以量化血流动力学,但需要长时间的采集时间,妨碍其广泛用于早期诊断心血管疾病。为了减少采集​​时间,常规使用来自未采样测量的重建方法,使得利用旨在提高图像可压缩性的表示。重建的解剖和血液动力学图像可能存在视觉伪影。尽管这些工件中的一些基本上是重建错误,因此欠采样的后果,其他人可能是由于测量噪声或采样频率的随机选择。另有说明,重建的图像变为随机变量,并且其偏差和其协方差都可以导致视觉伪影;后者会导致可能误解的空间相关性以用于视觉信息。虽然前者的性质已经在文献中已经研究过,但后者尚未得到关注。在这项研究中,我们研究了从重建过程产生的随机扰动的理论特性,并对模拟和主动脉瘤进行了许多数值实验。我们的结果表明,当基于$ \ ell_1 $ -norm最小化的高斯欠采样模式与恢复算法组合时,相关长度保持限制为2到三个像素。然而,对于其他欠采样模式,相关长度可以显着增加,较高的欠采样因子(即8倍或16倍压缩)和不同的重建方法。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
论一般相对论中的长期分类问题,我们采用机器学习和现代数据科学的富有成效技术采取小说视角。特别是,我们模拟Petrov的分类时间的分类,并表明前馈神经网络可以实现高度的成功。我们还展示了数据可视化技术如何具有维度降低的技术可以帮助分析不同类型的刻度的结构中的底层图案。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译