校准仍然是脑电脑接口(BCI)中用户体验的重要问题。甚至在开始使用BCI之前,常见的实验设计往往涉及提高认知疲劳的冗长的训练期。通过依赖于先进的机器学习技术,例如转移学习,可以减少或抑制这种依赖的校准。在Riemannian BCI上建立,我们提出了一种简单有效的方案,可以在不同主题记录的数据上培训分类器,以减少校准,同时保持良好的性能。本文的主要新颖性是提出一种独特的方法,可以应用于非常不同的范式。为了展示这种方法的稳健性,我们对三个BCI范例的多个数据集进行了元分析:事件相关的电位(P300),电机图像和SSVEP。依靠MoABB开源框架来确保实验的再现性和统计分析,结果清楚地表明,该方法可以应用于任何类型的BCI范例,并且在大多数情况下都可以显着提高分级性可靠性。我们指出了一些关键特征,以进一步提高转移学习方法。
translated by 谷歌翻译
我们研究了二阶算法混合牛顿方法和惯性梯度下降的渐近行为在非凸景观中。我们表明,尽管牛顿行为这些方法,但它们几乎总是逃脱严格的马鞍点。我们还证明了这些方法的超级参数在其定性行为附近关键点的定性行为发挥作用。理论结果由数字插图支持。
translated by 谷歌翻译
鉴于Vanilla SGD的直接简单,本文在迷你批处理箱中提供了精细调整其阶梯尺寸。为了这样做,基于局部二次模型并仅使用嘈杂的梯度近似来估计曲率。一个人获得一种新的随机第一阶方法(步骤调谐的SGD),由二阶信息增强,这可以被视为古典Barzilai-Borwein方法的随机版本。我们的理论结果确保了几乎肯定的趋同集,我们提供了收敛速率。深度剩余网络培训的实验说明了我们方法的有利性质。对于我们在培训期间观察到的网络,突然下降的损失和中等阶段的测试精度的提高,产生比SGD,RMSPROP或ADAM更好的结果。
translated by 谷歌翻译