我们设计了一种算法,用于查找具有强大理论保证其性能的反事实算法。对于任何单调模型$ f:x^d \ to \ {0,1 \} $和instance $ x^\ star $,我们的算法make \ [{s(f))} \ cdot \ log d} \]查询到$ f $并返回{哪个$ f(x')\ ne f(x^\ star)$。这里$ s(f)$是$ f $的灵敏度,lipschitz常数的分散类似物,$ \ delta_f(x^\ star)$是从$ x^\ star $到其最近的反事实的距离。以前最著名的查询复杂性是$ d^{\,o(\ delta_f(x^\ star))} $,可以通过Brute-Force Local Search实现。我们进一步证明了$ s(f)^{\ omega(\ delta_f(x^\ star))} + \ omega(\ log d)$的下限我们的算法本质上是最佳的。
translated by 谷歌翻译
来自不同摄像头设备的光学相干断层扫描(OCT)成像会导致挑战域的变化,并可能导致机器学习模型的精度严重下降。在这项工作中,我们引入了基于单数值分解(SVDNA)的最小噪声适应方法,以克服视网膜OCT成像中三个不同设备制造商的目标域之间的域间隙。我们的方法利用噪声结构的差异成功地弥合了不同OCT设备之间的域间隙,并将样式从未标记的目标域图像转移到可用手动注释的源图像。我们演示了该方法尽管简单,但如何比较甚至胜过最先进的无监督域适应方法,用于在公共OCT数据集中进行语义细分。 SVDNA可以将仅几行代码集成到任何网络的增强管道中,这些网络与许多最新的域适应方法形成鲜明对比,这些方法通常需要更改基础模型体系结构或训练单独的样式转移模型。 SVDNA的完整代码实现可在https://github.com/valentinkoch/svdna上获得。
translated by 谷歌翻译
尽管最近的强化学习最近在学习复杂的行为方面非常成功,但它需要大量的数据才能学习任务,更不用说能够适应新任务了。引起这种限制的根本原因之一在于试验学习范式的强化学习范式的性质,在这种情况下,代理商与任务进行交流并进行学习仅依靠奖励信号,这是隐含的,这是隐含的和不足以学习的一项任务很好。相反,人类主要通过语义表征或自然语言指示来学习新技能。但是,将语言指示用于机器人运动控制来提高适应性,这是一个新出现的主题和挑战。在本文中,我们提出了一种元素算法,该算法通过多个操纵任务中的语言说明来解决学习技能的挑战。一方面,我们的算法利用语言指令来塑造其对任务的解释,另一方面,它仍然学会了在试用过程中解决任务。我们在机器人操纵基准(Meta-World)上评估了算法,并且在培训和测试成功率方面显着优于最先进的方法。该代码可在\ url {https://tumi6robot.wixsite.com/million}中获得。
translated by 谷歌翻译
是否可以在深网络中重组非线性激活函数以创建硬件有效的模型?为了解决这个问题,我们提出了一个称为重组激活网络(RANS)的新范式,该范式操纵模型中的非线性数量以提高其硬件意识和效率。首先,我们提出了RAN-STHICER(RAN-E) - 一个新的硬件感知搜索空间和半自动搜索算法 - 用硬件感知的块替换效率低下的块。接下来,我们提出了一种称为RAN-IMPLICIC(RAN-I)的无训练模型缩放方法,从理论上讲,我们在非线性单元的数量方面证明了网络拓扑与其表现性之间的联系。我们证明,我们的网络在不同尺度和几种类型的硬件上实现最新的成像网结果。例如,与有效网络-lite-B0相比,RAN-E在ARM Micro-NPU上每秒(FPS)提高了1.5倍,同时提高了类似的精度。另一方面,ran-i以相似或更好的精度表现出#macs的#macs降低2倍。我们还表明,在基于ARM的数据中心CPU上,RAN-I的FPS比Convnext高40%。最后,与基于Convnext的模型相比,基于RAN-I的对象检测网络在数据中心CPU上获得了类似或更高的映射,并且在数据中心CPU上的fps高达33%。
translated by 谷歌翻译
随着基于人工智能(AI)和机器学习(ML)技术的实用性的增长,对抗性攻击的威胁越来越大。有必要将这个生态系统的团队红色团结起来,以确定系统漏洞,潜在威胁,表征将增强系统鲁棒性并鼓励创造有效防御的属性。次要的需求是在不同的利益相关者,模型开发人员,用户和AI/ML安全专业人员等不同的利益相关者之间分享此AI安全威胁情报。在本文中,我们创建并描述了原型系统CTI4AI,以克服有条不紊地识别和共享AI/ML特定漏洞和威胁智能的需求。
translated by 谷歌翻译
基本图描述了某些道路(或道路集)配置的速度,流量和密度之间的关系。但是,这些图通常不反映有关速度流关系如何随着外源变量(例如路缘配置,天气或其他外源性,上下文信息)的函数而变化的信息。在本文中,我们提出了一种机器学习方法,该方法尊重已知的工程限制和道路通量的物理定律 - 那些在基本图中捕获的方法 - 并显示如何将其用于将上下文信息引入这些图表的生成中。建模任务被称为神经常规微分方程(神经ODES)的探针车辆轨迹重建问题。通过提出的方法,我们将基本图扩展到具有潜在障碍交通数据的非理想道路段。对于模拟数据,我们通过在学习阶段引入上下文信息来概括这种关系,即车辆组成,驾驶员行为,遏制分区配置等,并显示速度流的关系如何随着道路设计而变化而变化。 。
translated by 谷歌翻译
我在本文中提出的想法是一种基于从人工神经网络操作中提取的指导和无方向规则的综合功能。
translated by 谷歌翻译
准确地测量纳米颗粒的大小,形态和结构非常重要,因为它们在许多应用中都非常依赖其特性。在本文中,我们提出了一种基于深度学习的方法,用于根据扫描透射电子显微镜图像的少量数据集训练的纳米颗粒测量和分类。我们的方法由两个阶段组成:本地化,即检测纳米颗粒和分类,即其超微结构的分类。对于每个阶段,我们通过分析不同最新神经网络的分析来优化分割和分类。我们展示了如何使用图像处理或使用各种图像产生神经网络的合成图像的产生来改善两个阶段的结果。最后,将算法应用于双金属纳米颗粒,证明了大小分布的自动数据收集,包括复杂超微结构的分类。开发的方法可以轻松地转移到其他材料系统和纳米颗粒结构中。
translated by 谷歌翻译
对象探测器对于许多现代计算机视觉应用至关重要。但是,即使是最新的对象探测器也不是完美的。在两个看起来与人眼类似的图像上,同一探测器可以做出不同的预测,因为摄像机传感器噪声和照明变化等小图像变形。这个问题称为不一致。现有的准确性指标不能正确解释不一致的情况,并且在该领域的类似工作仅针对人造图像扭曲的改善。因此,我们提出了一种使用非人工视频框架来测量对象检测一致性,随着时间的流逝,跨帧的方法来测量对象检测一致性。使用此方法,我们表明,来自多个对象跟踪挑战的不同视频数据集,现代对象检测器的一致性范围从83.2%至97.1%。最后,我们表明应用图像失真校正(例如.WEBP图像压缩和UNSHARP遮罩)可以提高一致性多达5.1%,而准确性没有损失。
translated by 谷歌翻译
第44届软件工程国际会议(ICSE 2022)于2022年5月22日至2022年5月27日在美国宾夕法尼亚州匹兹堡亲自举行。在这里,我们总结了我们在会议上观察到的软件工程和测试领域的研究主题以及研究方向。
translated by 谷歌翻译