课堂表达学习是可解释的监督机器学习的分支,越来越重要。在描述逻辑中的类表达式学习的大多数现有方法是搜索算法或基于硬规则的。特别地,基于细化运营商的方法遭受可扩展性问题,因为它们依赖于启发式功能来探索每个学习问题的大搜索空间。我们提出了一系列新的方法,我们配合了合成方法。此系列的实例是从提供的示例中直接计算类表达式。因此,它们不受基于搜索方法的运行时限制,也不存在于基于硬规则的方法的缺乏灵活性。我们研究了这种新型方法的三个实例,该方法使用轻量级神经网络架构从积极的例子组合中综合类表达式。他们对四个基准数据集的评估结果表明,它们可以在平均水平上有效地合成相对于输入示例的高质量类表达。此外,与最先进的方法的比较Celoe和Eltl表明我们在大型本体中实现了更好的F措施。为了重现性目的,我们提供了我们的实施以及在HTTPS://github.com/conceptLengtlearner/nces的公共Github存储库中的预先训练模型
translated by 谷歌翻译
知识图中的节点是一个重要任务,例如,预测缺失类型的实体,预测哪些分子导致癌症,或预测哪种药物是有前途的治疗候选者。虽然黑匣子型号经常实现高预测性能,但它们只是hoc后和本地可解释的,并且不允许学习模型轻松丰富域知识。为此,已经提出了学习描述了来自正和否定示例的逻辑概念。然而,学习这种概念通常需要很长时间,最先进的方法为文字数据值提供有限的支持,尽管它们对于许多应用是至关重要的。在本文中,我们提出了Evolearner - 学习ALCQ(D)的进化方法,它是与合格基数限制(Q)和数据属性配对的补充(ALC)的定语语言和数据属性(D)。我们为初始群体贡献了一种新颖的初始化方法:从正示例开始(知识图中的节点),我们执行偏见随机散步并将它们转换为描述逻辑概念。此外,我们通过在决定分割数据的位置时,通过最大化信息增益来提高数据属性的支持。我们表明,我们的方法在结构化机器学习的基准框架SML - 台阶上显着优于现有技术。我们的消融研究证实,这是由于我们的新颖初始化方法和对数据属性的支持。
translated by 谷歌翻译
基于细化运算符的概念学习方法探索部分有序的解决方案空间来计算概念,这些空间用作个体的二进制分类模型。然而,这些方法探索的概念的数量可以很容易地增长到数百万的复杂学习问题。这通常会导致不切实际的运行时间。我们建议通过预测解决方案空间探索前的目标概念的长度来缓解这个问题。通过这些手段,我们可以在概念学习期间修剪搜索空间。为了实现这一目标,我们比较四个神经结构,并在四个基准上进行评估。我们的评估结果表明,经常性的神经网络架构在概念长度预测中表现最佳,宏F-MEARY从38%到92%。然后,我们扩展了eloe算法 - 学习ALC概念 - 我们的概念长度预测器。我们的扩展会产生算法剪辑。在我们的实验中,夹子比ALC的其他最先进的概念学习算法速度至少为7.5倍 - 包括Celoe - 并且在4个数据集中学习的3个概念的F-Peasure中实现了重大改进。为了重现性,我们在HTTPS://github.com/conceptlencthLearner/learnlencths中提供我们在公共Github存储库中的实现
translated by 谷歌翻译
知识图形嵌入研究主要集中在两个最小的规范部门代数,$ \ mathbb {r} $和$ \ mathbb {c} $。最近的结果表明,四元增值嵌入的三线性产品可以是解决链路预测的更有效手段。此外,基于真实嵌入的卷曲的模型通常会产生最先进的链路预测结果。在本文中,我们调查了一种卷积操作的组成,具有超量用乘法。我们提出了四个方法qmult,amult,convic和convo来解决链路预测问题。 Qmult和Omult可以被视为先前最先进方法的四元数和octonion扩展,包括Distmult和复杂。 Convic和Convo在Qmult和Omlult上建立在剩余学习框架的方式中包括卷积操作。我们在七个链路预测数据集中评估了我们的方法,包括WN18RR,FB15K-237和YAGO3-10。实验结果表明,随着知识图的规模和复杂性的增长,学习超复分价值的矢量表示的益处变得更加明显。 Convo优于MRR的FB15K-237上的最先进的方法,命中@ 1并点击@ 3,而Qmult,Omlult,Convic和Convo在所有度量标准中的Yago3-10上的最终倾斜的方式。结果还表明,通过预测平均可以进一步改善链路预测性能。为了培养可重复的研究,我们提供了开源的方法,包括培训和评估脚本以及佩戴型模型。
translated by 谷歌翻译
基础培训数据的质量对于建立具有更广泛的Generalizabilty的表演机器学习模型非常重要。但是,当前机器学习(ML)工具缺乏简化的流程,用于提高数据质量。因此,获取数据质量见解并迭代地修剪以获取最大代表下游使用情况的数据集的错误仍然是Ad-hoc手动过程。我们的工作解决了这种数据工具差距,需要纯粹通过以数据为中心的技术构建改进的ML工作流程。更具体地说,我们介绍了(1)在数据集中找到嘈杂或错误标记的样本的系统框架,(2)识别最具信息丰富的样本,当包含在训练中时,该样本将提供最大的模型性能提升。我们展示了我们在公共场合的框架以及两家财富500强公司的私营企业数据集的效果,并确信这项工作将形成ML团队执行更智能的数据发现和修剪的基础。
translated by 谷歌翻译
由于新型模型利用较大的数据集和新颖架构,通过生成模型创建的合成图像提高了质量和表现力。尽管这种质感主义是来自创意的角度的正副作用,但是当这种生成模型用于无同意时的冒充时,它会出现问题。这些方法中的大多数是基于源和目标对之间的部分传输,或者它们基于理想的分布生成完全新的样本,仍然类似于数据集中最接近的真实样本。我们提出Mixsyn(阅读为“Mixin”),用于从多种来源学习新的模糊组合物并将新颖的图像作为与组合物对应的图像区域的混合。 Mixsyn不仅将来自多个源掩码的不相关的区域与相干语义组成相结合,而且还生成了非现有图像的掩模感知的高质量重建。我们将Mixsyn与最先进的单源顺序发电和拼贴生成方法相比,在质量,多样性,现实主义和表现力方面;同时还展示了交互式合成,混合和匹配,以及编辑传播任务,没有掩码依赖性。
translated by 谷歌翻译
冷冻切片(FS)是手术操作期间组织微观评估的制备方法。该程序的高速允许病理学医师快速评估关键的微观特征,例如肿瘤边距和恶性地位,以引导手术决策,并尽量减少对操作过程的干扰。然而,FS容易引入许多误导性的人工结构(组织学人工制品),例如核冰晶,压缩和切割人工制品,妨碍了病理学家的及时和准确的诊断判断。额外的培训和长期经验通常需要对冻结部分进行高度有效和时间关键的诊断。另一方面,福尔马林固定和石蜡嵌入(FFPE)的黄金标准组织制备技术提供了显着优越的图像质量,而是一种非常耗时的过程(12-48小时),使其不适合术语用。在本文中,我们提出了一种人工智能(AI)方法,通过在几分钟内将冻结的整个幻灯片(FS-WSIS)计算冻结的整个幻灯片(FS-WSIS)来改善FS图像质量。 AI-FFPE将FS人工制品终止了注意力机制的指导,该引导机制在利用FS输入图像和合成的FFPE样式图像之间利用建立的自正则化机制,以及综合相关特征的合成的FFPE样式图像。结果,AI-FFPE方法成功地生成了FFPE样式图像,而不会显着扩展组织处理时间,从而提高诊断准确性。我们证明了使用各种不同的定性和定量度量,包括来自20个董事会认证的病理学家的视觉图灵测试的各种不同的定性和定量度量。
translated by 谷歌翻译
本文讨论了具有丰富记录数据的域中的政策选择问题,但互动预算有限。解决此问题将在行业,机器人和推荐领域中安全评估和部署离线强化学习政策等。已经提出了几种违规评估(OPE)技术以评估仅使用记录数据的策略的值。然而,OPE的评估与真实环境中的完整在线评估之间仍然存在巨大差距。然而,在实践中通常不可能进行大量的在线互动。为了克服这个问题,我们介绍了\ emph {主动脱机策略选择} - 一种新的顺序决策方法,将记录数据与在线交互相结合,以识别最佳策略。这种方法使用ope估计来热启动在线评估。然后,为了利用有限的环境相互作用,我们决定基于具有表示政策相似性的内核函数的贝叶斯优化方法来评估哪个策略。我们使用大量候选政策的多个基准,以表明所提出的方法提高了最先进的OPE估计和纯在线策略评估。
translated by 谷歌翻译
学习遥感(RS)图像之间的相似性形成基于内容的RS图像检索(CBIR)的基础。最近,将图像的语义相似性映射到嵌入(度量标准)空间的深度度量学习方法已经发现非常流行。学习公制空间的常见方法依赖于将与作为锚称为锚的参考图像的类似(正)和不同(负)图像的三胞胎的选择。选择三胞胎是一个难以为多标签RS CBIR的困难任务,其中每个训练图像由多个类标签注释。为了解决这个问题,在本文中,我们提出了一种在为多标签RS CBIR问题定义的深神经网络(DNN)的框架中提出了一种新颖的三联样品采样方法。该方法基于两个主要步骤选择一小部分最多代表性和信息性三元组。在第一步中,使用迭代算法从当前迷你批量选择在嵌入空间中彼此多样化的一组锚。在第二步中,通过基于新颖的策略评估彼此之间的图像的相关性,硬度和多样性来选择不同的正面和负图像。在两个多标签基准档案上获得的实验结果表明,在DNN的上下文中选择最具信息丰富和代表性的三胞胎,导致:i)降低DNN训练阶段的计算复杂性,而性能没有任何显着损失; ii)由于信息性三元组允许快速收敛,因此学习速度的增加。所提出的方法的代码在https://git.tu-berlin.de/rsim/image-reetrieval-from-tropls上公开使用。
translated by 谷歌翻译
遥感(RS)图像的多标签分类(MLC)的准确方法的开发是RS中最重要的研究主题之一。基于深度卷积神经网络(CNNS)的方法显示了RS MLC问题的强劲性能。然而,基于CNN的方法通常需要多个陆地覆盖类标签注释的大量可靠的训练图像。收集这些数据是耗时和昂贵的。为了解决这个问题,可包括嘈杂标签的公开专题产品可用于向RS零标记成本注释RS图像。但是,多标签噪声(可能与错误且缺少标签注释相关)可以扭曲MLC算法的学习过程。标签噪声的检测和校正是具有挑战性的任务,尤其是在多标签场景中,其中每个图像可以与多于一个标签相关联。为了解决这个问题,我们提出了一种新的噪声稳健协作多标签学习(RCML)方法,以减轻CNN模型训练期间多标签噪声的不利影响。 RCML在基于三个主模块的RS图像中识别,排名和排除噪声多标签:1)差异模块; 2)组套索模块; 3)交换模块。差异模块确保两个网络了解不同的功能,同时产生相同的预测。组套索模块的任务是检测分配给多标记训练图像的潜在嘈杂的标签,而交换模块任务致力于在两个网络之间交换排名信息。与现有的方法不同,我们提出了关于噪声分布的假设,我们所提出的RCML不会在训练集中的噪声类型之前进行任何先前的假设。我们的代码在线公开提供:http://www.noisy-labels-in-rs.org
translated by 谷歌翻译