实体类型预测是知识图中的一个重要问题(kg)研究。在这项工作中提出了一种新的KG实体类型预测方法,名为Core(复杂的空间回归和嵌入)。所提出的核心方法利用两个复杂空间嵌入模型的表现力;即,旋转和复杂的模型。它使用旋转或复杂地将实体和类型嵌入两个不同的复杂空间中。然后,我们推导了一个复杂的回归模型来链接这两个空格。最后,介绍了一种优化嵌入和回归参数的机制。实验表明,核心优于代表性KG实体型推理数据集的基准测试方法。分析了各种实体型预测方法的强度和弱点。
translated by 谷歌翻译
知识库完成在这项工作中被制定为二进制分类问题,其中使用知识图中的相关链接(KGS)培训XGBoost二进制分类器。新方法名为KGBoost,采用模块化设计,并尝试找到硬阴性样本,以便培训强大的分类器以进行缺失链路预测。我们在多个基准数据集中进行实验,并证明KGBoost在大多数数据集中优于最先进的方法。此外,与端到端优化训练的模型相比,kgboost在低维设置下运行良好,以便允许更小的型号尺寸。
translated by 谷歌翻译
视觉径图旨在使用视觉传感器捕获的信息跟踪对象的增量运动。在这项工作中,我们研究了点云测量问题,其中仅使用LIDAR(光检测和测距)获得的点云扫描来估计对象的运动轨迹。提出了一种轻量点云测距溶液,并命名为绿点云机径(GPCO)方法。 GPCO是一种无监督的学习方法,可以通过匹配连续点云扫描的特征来预测对象运动。它由三个步骤组成。首先,使用几何特征感知点采样方案来选择来自大点云的判别点。其次,视图被划分为围绕对象的四个区域,并且尖端++方法用于提取点特征。第三,建立点对应,以估计两个连续扫描之间的对象运动。进行了基准数据集的实验,以证明GPCO方法的有效性。据观察,GPCO以准确性的准确性越优于深度学习方法,而模型规模明显较小,培训时间较少。
translated by 谷歌翻译
周等人提出了一个无人监督,轻质和高性能的单一对象追踪器,称为UHP-SOT。最近。作为一个扩展,我们在这项工作中介绍了一个增强版本并将其命名为UHP-SOT ++。基于基于鉴别相关滤波器的(基于DCF的)跟踪器的基础,在UHP-SOT和UHP-SOT ++中引入了两种新成分:1)背景运动建模和2)对象盒轨迹建模。 UHP-SOT和UHP-SOT ++之间的主要区别是来自三种模型的提案的融合策略(即DCF,背景运动和对象盒轨迹模型)。 UHP-SOT ++采用了一种改进的融合策略,可针对大规模跟踪数据集更加强大的跟踪性能。我们的第二件贡献在于通过在四个SOT基准数据集 - OTB2015,TC128,UAV123和LASOT上进行测试,对最先进的监督和无监督方法进行了广泛的评估。实验表明,UHP-SOT ++优于所有先前的无监督方法和几种深度学习(DL)方法,以跟踪准确性。由于UHP-SOT ++具有极小的模型大小,高跟踪性能和低计算复杂性(即使在I5 CPU上以20 fps运行,即使没有代码优化),则是资源实时对象跟踪中的理想解决方案 - 有限平台。基于实验结果,我们比较监督和无监督者的优缺点,并提供了一种新的视角,了解监督和无监督方法之间的性能差距,这是这项工作的第三次贡献。
translated by 谷歌翻译
在该工作中提出了一种用于检测CNN生成的图像的新方法,称为注意力PIXELHOP(或A-PIXELHOP)。它有三个优点:1)计算复杂性低,模型尺寸小,2)对多种生成型号的高检测性能,以及3)数学透明度。 A-Pixelhop是在假设中难以在本地区域中合成高质量的高频分量的假设。它包含四个构建模块:1)选择边缘/纹理块,其包含显着的高频分量,2)将多个过滤器组应用于它们以获得丰富的空间光谱响应,如功能,3)将功能送至多个二进制分类器。获得一套软化决策,4)开发有效的集合计划,以使软决策融入最终决定。实验结果表明,A-Pixelhop在检测激活的图像中优于最先进的方法。此外,它可以概括到未经看明的生成模型和数据集。
translated by 谷歌翻译
关于比较治疗效果的最佳证据来自临床试验,其结果在非结构化的文章中据报道。医疗专家必须手动提取文章中的信息以告知决策,这是耗时和昂贵的。在这里,我们考虑(a)从描述临床试验(实体识别)的全文物品中提取治疗和结果的端到端任务,(b)推断前者的报告结果(关系萃取)。我们为此任务介绍了新数据,并评估最近在自然语言处理中获得类似任务的最先进结果的模型。然后,我们提出了一种新的方法,激励了通常介绍了如何呈现这些纯粹数据驱动的基线的试验结果。最后,我们对该模型进行了一定的评估,并具有非营利性寻求鉴定可能重新用癌症的现有药物,显示出端到端证据提取系统的潜在效用。
translated by 谷歌翻译
2019年冠状病毒疾病(Covid-19)继续自爆发以来对世界产生巨大挑战。为了对抗这种疾病,开发了一系列人工智能(AI)技术,并应用于现实世界的情景,如安全监测,疾病诊断,感染风险评估,Covid-19 CT扫描的病变细分等。 Coronavirus流行病迫使人们佩戴面膜来抵消病毒的传播,这也带来了监控戴着面具的大群人群的困难。在本文中,我们主要关注蒙面面部检测和相关数据集的AI技术。从蒙面面部检测数据集的描述开始,我们调查了最近的进步。详细描述并详细讨论了十三可用数据集。然后,该方法大致分为两类:传统方法和基于神经网络的方法。常规方法通常通过用手工制作的特征升高算法来训练,该算法占少比例。基于神经网络的方法根据处理阶段的数量进一步归类为三个部分。详细描述了代表性算法,与一些简要描述的一些典型技术耦合。最后,我们总结了最近的基准测试结果,讨论了关于数据集和方法的局限性,并扩大了未来的研究方向。据我们所知,这是关于蒙面面部检测方法和数据集的第一次调查。希望我们的调查可以提供一些帮助对抗流行病的帮助。
translated by 谷歌翻译
现实世界机器学习部署的特点是源(训练)和目标(测试)分布之间的不匹配,可能导致性能下降。在这项工作中,我们研究了仅使用标记的源数据和未标记的目标数据来预测目标域精度的方法。我们提出了平均阈值的置信度(A​​TC),一种实用的方法,用于了解模型的置信度的阈值,预测精度作为模型置信度超过该阈值的未标记示例的分数。 ATC优于多种模型架构的先前方法,分发班次类型(例如,由于综合损坏,数据集再现或新颖的群体)和数据集(野外,想象成,品种,CNIST)。在我们的实验中,ATC估计目标性能$ 2 $ 2美元 - 比以前的方法更准确地获得4美元。我们还探讨了问题的理论基础,证明通常,识别精度与识别最佳预测因子一样难以识别,因此,任何方法的功效都依赖于(可能是未列区)假设对移位的性质。最后,在一些玩具分布中分析了我们的方法,我们提供了有关其工作时的见解。
translated by 谷歌翻译
本文报告了Chalearn的Autodl挑战系列的结果和后攻击分析,这有助于对自动学习(DL)进行分类,以便在各种环境中引入的深度学习(DL),但缺乏公平的比较。格式化所有输入数据模型(时间序列,图像,视频,文本,表格)作为张量,所有任务都是多标签分类问题。代码提交已在隐藏的任务上执行,具有限制时间和计算资源,推动快速获取结果的解决方案。在此设置中,DL方法占主导地位,但流行的神经结构搜索(NAS)是不切实际的。解决方案依赖于微调预培训的网络,架构匹配数据模块。挑战后测试没有透露超出强加时间限制的改进。虽然没有组件尤其原始或新颖,但是一个高级模块化组织出现了“Meta-Learner”,“数据摄入”,“模型选择器”,“模型/学习者”和“评估员”。这种模块化使得消融研究,揭示了(离坡)元学习,合奏和高效数据管理的重要性。异构模块组合的实验进一步证实了获胜解决方案的(本地)最优性。我们的挑战队遗产包括一个持久的基准(http://utodl.chalearn.org),获胜者的开放源代码,以及免费的“autodl自助服务”。
translated by 谷歌翻译
卷积层和损耗功能是深度学习中的两个基本组件。由于传统的深度学习内核的成功,尽管它们可以提供不同频率,方向和比例的不同频率,方向和尺度的丰富功能,但较不可能的Gabor内核变得不那么受欢迎。对于多级图像分割的现有损失函数,通常有准确性,鲁棒性对超参数的折衷以及用于组合不同损失的手动选择。因此,为了获得使用Gabor核心的益处,同时保持深度学习中的自动特征生成的优势,我们提出了一种完全可训练的Gabor的卷积层,其中所有Gabor参数都是通过BackPropagation培训的。此外,我们基于Pearson的相关系数提出了一种损失函数,这是准确的,对学习速率的准确,鲁棒性,并且不需要手动重量选择。在43d脑磁共振图像上的实验,具有19个解剖结构,表明,使用所提出的损失功能与常规和基于Gabor的内核的适当组合,我们可以训练只有160万参数的网络,以实现83的平均骰子系数%。该尺寸比V-NET小44倍,具有7100万参数。本文展示了在深度学习3D分割中使用学习参数核的潜力。
translated by 谷歌翻译