电缆在许多环境中无处不在,但容易出现自我闭合和结,使它们难以感知和操纵。挑战通常会随着电缆长度而增加:长电缆需要更复杂的松弛管理和策略,以促进可观察性和可及性。在本文中,我们专注于使用双边机器人自动弄清长达3米的电缆。我们开发了新的运动原语,以有效地解开长电缆和专门用于此任务的新型Gripper Jaws。我们提出了缠结操作(SGTM)的滑动和抓握,该算法将这些原始物与RGBD视觉构成迭代性毫无障碍。SGTM在隔离的外手上取消了67%的成功率,图8节和更复杂的配置上的50%。可以在https://sites.google.com/view/rss-2022-untangling/home上找到补充材料,可视化和视频。
translated by 谷歌翻译
机器人舰队的商业和工业部署在处决期间通常会落在遥远的人类遥控者身上,当时机器人处于危险之中或无法取得任务进展。通过持续学习,随着时间的推移,从偏远人类的干预措施也可以用来改善机器人机队控制政策。一个核心问题是如何有效地将人类关注分配给单个机器人。先前的工作在单机器人的单人类设置中解决了这一点。我们正式化了交互式车队学习(IFL)设置,其中多个机器人可以交互查询并向多个人类主管学习。我们提出了一个完全实施的开源IFL基准套件,以评估IFL算法的GPU加速ISAAC健身环境。我们提出了Fleet-Dagger,这是一个IFL算法的家庭,并将一种新颖的Fleet Dagger算法与模拟中的4个基准进行了比较。我们还使用4个ABB Yumi机器人臂进行了1000个物理块式实验试验。实验表明,人类向机器人的分配显着影响机器人车队的性能,并且我们的算法比基线的算法获得了人类努力回报的8.8倍。有关代码,视频和补充材料,请参见https://tinyurl.com/fleet-dagger。
translated by 谷歌翻译
机器人外科助理(RSAs)通常用于通过专家外科医生进行微创手术。然而,长期以来充满了乏味和重复的任务,如缝合可以导致外科医生疲劳,激励缝合的自动化。随着薄反射针的视觉跟踪极具挑战性,在未反射对比涂料的情况下修改了针。作为朝向无修改针的缝合子任务自动化的步骤,我们提出了休斯顿:切换未经修改,外科手术,工具障碍针,一个问题和算法,它使用学习的主动传感策略与立体声相机本地化并对齐针头进入另一臂的可见和可访问的姿势。为了补偿机器人定位和针头感知误差,然后算法执行使用多个摄像机的高精度抓握运动。在使用Da Vinci研究套件(DVRK)的物理实验中,休斯顿成功通过了96.7%的成功率,并且能够在故障前平均地在臂32.4倍之间顺序地执行切换。在培训中看不见的针头,休斯顿实现了75-92.9%的成功率。据我们所知,这项工作是第一个研究未修改的手术针的切换。查看https://tinyurl.com/huston-surgery用于额外​​的材料。
translated by 谷歌翻译
安全探索对于使用风险敏感环境中的强化学习(RL)至关重要。最近的工作了解衡量违反限制概率的风险措施,然后可以使用安全性来实现安全性。然而,学习这种风险措施需要与环境的重大互动,从而在学习期间违反违规程度过多。此外,这些措施不易转移到新环境。我们将安全探索作为离线Meta RL问题,目的是利用一系列环境中的安全和不安全行为的例子,以快速将学习风险措施与以前看不见的动态的新环境。然后,我们向安全适应(MESA)提出元学习,这是一个荟萃学习安全RL的风险措施的方法。跨5个连续控制域的仿真实验表明,MESA可以从一系列不同的环境中利用脱机数据,以减少未经调整环境中的约束违规,同时保持任务性能。有关代码和补充材料,请参阅https://tinyurl.com/safe-meta-rl。
translated by 谷歌翻译