超声检查的胎儿生长评估是基于一些生物特征测量,这些测量是手动进行并相对于预期的妊娠年龄进行的。可靠的生物特征估计取决于标准超声平面中地标的精确检测。手动注释可能是耗时的和依赖操作员的任务,并且可能导致高测量可变性。现有的自动胎儿生物特征法的方法依赖于初始自动胎儿结构分割,然后是几何标记检测。但是,分割注释是耗时的,可能是不准确的,具有里程碑意义的检测需要开发特定于测量的几何方法。本文描述了Biometrynet,这是一个克服这些局限性的胎儿生物特征估计的端到端地标回归框架。它包括一种新型的动态定向测定(DOD)方法,用于在网络训练过程中执行测量特定方向的一致性。 DOD可降低网络训练中的变异性,提高标志性的定位精度,从而产生准确且健壮的生物特征测量。为了验证我们的方法,我们组装了一个来自1,829名受试者的3,398张超声图像的数据集,这些受试者在三个具有七个不同超声设备的临床部位收购。在两个独立数据集上的三个不同生物识别测量值的比较和交叉验证表明,生物元网络是稳健的,并且产生准确的测量结果,其误差低于临床上允许的误差,优于其他现有的自动化生物测定估计方法。代码可从https://github.com/netanellavisdris/fetalbiometry获得。
translated by 谷歌翻译